CU 300
Installation and operating instructions

- No contact
- Overvoltage
- Undervoltage
- Dry running
- Speed reduction
- Overtemperature
- Overload
- Sensor alarm

Other languages
www.grundfos.com/CU300-manual
English (GB) Installation and operating instructions

Original installation and operating instructions.

CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Symbols used in this document</td>
</tr>
<tr>
<td>2</td>
<td>General</td>
</tr>
<tr>
<td>2.1</td>
<td>Expansion possibilities</td>
</tr>
<tr>
<td>2.2</td>
<td>On/Off button</td>
</tr>
<tr>
<td>3</td>
<td>Mechanical installation</td>
</tr>
<tr>
<td>3.1</td>
<td>Location</td>
</tr>
<tr>
<td>3.2</td>
<td>Mounting CU 300</td>
</tr>
<tr>
<td>4</td>
<td>CU 300 as an alarm unit</td>
</tr>
<tr>
<td>4.1</td>
<td>Description</td>
</tr>
<tr>
<td>4.2</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>4.3</td>
<td>Description of dry-running protection</td>
</tr>
<tr>
<td>4.4</td>
<td>Settings</td>
</tr>
<tr>
<td>4.5</td>
<td>Description of the dewatering function</td>
</tr>
<tr>
<td>5</td>
<td>CU 300 with constant-pressure control - 0 to 6 bar</td>
</tr>
<tr>
<td>5.1</td>
<td>Description</td>
</tr>
<tr>
<td>5.2</td>
<td>Function</td>
</tr>
<tr>
<td>5.3</td>
<td>Positioning the pressure sensor</td>
</tr>
<tr>
<td>5.4</td>
<td>System sizing</td>
</tr>
<tr>
<td>5.5</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>5.6</td>
<td>Startup</td>
</tr>
<tr>
<td>6</td>
<td>CU 300 with constant-pressure control - 0 to 10 bar</td>
</tr>
<tr>
<td>6.1</td>
<td>Description</td>
</tr>
<tr>
<td>6.2</td>
<td>Function</td>
</tr>
<tr>
<td>6.3</td>
<td>Positioning the pressure sensor</td>
</tr>
<tr>
<td>6.4</td>
<td>System sizing</td>
</tr>
<tr>
<td>6.5</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>6.6</td>
<td>Startup</td>
</tr>
<tr>
<td>7</td>
<td>CU 300 with constant-pressure control - two-pump operation</td>
</tr>
<tr>
<td>7.1</td>
<td>Description</td>
</tr>
<tr>
<td>7.2</td>
<td>Function</td>
</tr>
<tr>
<td>7.3</td>
<td>Positioning the pressure sensor</td>
</tr>
<tr>
<td>7.4</td>
<td>System sizing</td>
</tr>
<tr>
<td>7.5</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>7.6</td>
<td>Startup</td>
</tr>
<tr>
<td>8</td>
<td>CU 300 with sensors</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
</tr>
<tr>
<td>8.2</td>
<td>Sensor functioning</td>
</tr>
<tr>
<td>8.3</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>9</td>
<td>CU 300 connected to potentiometer</td>
</tr>
<tr>
<td>9.1</td>
<td>Description</td>
</tr>
<tr>
<td>9.2</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>10</td>
<td>CU 300 connected to water meter</td>
</tr>
<tr>
<td>10.1</td>
<td>Description</td>
</tr>
<tr>
<td>10.2</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>11</td>
<td>Constant water level</td>
</tr>
<tr>
<td>11.1</td>
<td>Description</td>
</tr>
<tr>
<td>11.2</td>
<td>Function</td>
</tr>
<tr>
<td>12</td>
<td>CU 300 connected to RS-485</td>
</tr>
<tr>
<td>12.1</td>
<td>Description</td>
</tr>
<tr>
<td>12.2</td>
<td>CU 300 connected to a PC directly</td>
</tr>
<tr>
<td>12.3</td>
<td>Electrical installation</td>
</tr>
<tr>
<td>13</td>
<td>Alarm functions</td>
</tr>
<tr>
<td>13.1</td>
<td>No contact</td>
</tr>
<tr>
<td>13.2</td>
<td>Overvoltage</td>
</tr>
<tr>
<td>13.3</td>
<td>Undervoltage</td>
</tr>
<tr>
<td>13.4</td>
<td>Dry running</td>
</tr>
<tr>
<td>13.5</td>
<td>Speed reduction</td>
</tr>
<tr>
<td>13.6</td>
<td>Overtemperature</td>
</tr>
<tr>
<td>13.7</td>
<td>Overload</td>
</tr>
<tr>
<td>13.8</td>
<td>Sensor alarm</td>
</tr>
<tr>
<td>14</td>
<td>CU 300 with Grundfos GO</td>
</tr>
<tr>
<td>14.1</td>
<td>Menu overview</td>
</tr>
<tr>
<td>15</td>
<td>Description of functions</td>
</tr>
<tr>
<td>15.1</td>
<td>Status</td>
</tr>
<tr>
<td>15.2</td>
<td>Settings</td>
</tr>
<tr>
<td>15.3</td>
<td>Alarms and warnings</td>
</tr>
<tr>
<td>16</td>
<td>Technical data</td>
</tr>
<tr>
<td>17</td>
<td>Disposal</td>
</tr>
</tbody>
</table>
1. Symbols used in this document

Warning
If these safety instructions are not observed, it may result in personal injury.

Note
Notes or instructions that make the job easier and ensure safe operation.

2. General

The control unit CU 300 is developed for the SQE submersible pumps.
CU 300 covers the voltage range 1 x 100-240 V - 10 %/+ 6 %, 50/60 Hz, PE.
CU 300 has the following functions:
- control of the pump on the basis of sensor signals
- setting of operating parameters
- monitoring of operation and alarm indication, if any.
CU 300 indicates the following alarms:
- no contact
- overvoltage
- undervoltage
- dry running
- speed reduction
- overtemperature
- overload
- sensor alarm.
The individual alarms are described in details in section 13. Alarm functions.
CU 300 receives alarm signals from the motor for the following parameters:
- dry running
- incipient pump or motor defect
- too high temperature in motor electronics
- supply failure.
As standard, CU 300 incorporates an alarm signal relay.

2.1 Expansion possibilities

CU 300 enables the use of the following devices:
- Grundfos GO:
 Wireless infra-red remote control that enables change of factory settings and monitoring of the installation by calling up actual operating data, e.g. speed, operating hours and power consumption.
- External sensors:
 Reception of data from external sensors and control according to the data received, e.g. flow rate, pressure, water level and conductivity.
- External potentiometer SPP 1:
 Manual speed control.

2.2 On/Off button

By means of the On/Off button on CU 300, you can do the following:
- Start or stop the pump.
- Reset alarms.

The green and red indicator lights in the On/Off button indicate pump operating condition as follows:

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green indicator light</td>
<td>Pump is operating</td>
</tr>
<tr>
<td>permanently on</td>
<td></td>
</tr>
<tr>
<td>Flashing</td>
<td>Pump has been stopped by one of the following:</td>
</tr>
<tr>
<td></td>
<td>• a sensor</td>
</tr>
<tr>
<td></td>
<td>• an external on/off switch</td>
</tr>
<tr>
<td></td>
<td>• a stop command from the Grundfos GO</td>
</tr>
<tr>
<td>Red indicator light</td>
<td>Pump has been stopped by means of the On/Off button*</td>
</tr>
<tr>
<td>permanently on</td>
<td></td>
</tr>
<tr>
<td>Flashing</td>
<td>CU 300 is communicating with the Grundfos GO</td>
</tr>
</tbody>
</table>

* If you use the On/Off button to stop the pump, you must also use this button for restarting the pump.
If you press the On/Off button for minimum 5 seconds, you start the pump, irrespective of any active fault or alarm indications. When you release the On/Off button, the pump will stop.
3. Mechanical installation

Warning
Before starting any work on CU 300, make sure that the power supply has been switched off and that it cannot be accidentally switched on.

3.1 Location
You can place CU 300 both indoors and outdoors. The control unit must not be exposed to direct sunlight.

3.2 Mounting CU 300
CU 300 is designed for wall mounting.
The box has six mounting holes (Φ4). See fig. 2. The dimensions are in mm.
CU 300 must be mounted as follows:
• Horizontally to allow condensed water, if any, to escape. See fig. 2.
• On a plane surface to avoid deformation of the box.

Fig. 2

CU 300 is supplied with a set of gaskets for the Pg screwed connections.
The gaskets are to be used for the connection of cables or wires to ensure tight connections, IP55, and cable relief.

4. CU 300 as an alarm unit

4.1 Description
When CU 300 is connected to an SQE pump, one of the eight red indicator lights on CU 300 will indicate any alarm.
The indications are based on signals from the motor and from sensors, if installed. The individual alarms are described in details in section 13. Alarm functions.
You can connect an external alarm-signal transmitter and an external on/off switch. See section 4.2 Electrical installation concerning connection, etc.
Figure 3 shows an example of an installation with CU 300 as an alarm unit.

Fig. 3

CU 300 functions as an alarm unit for the pump. Furthermore, you can communicate with the pump via the remote control Grundfos GO, see also section 14. CU 300 with Grundfos GO.
4.2 Electrical installation

Warning

Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

![Diagram of CU 300](image-url)

Fig. 4

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>On/off switch for start or stop of pump</td>
</tr>
<tr>
<td>H</td>
<td>Alarm signal transmitter (optional)</td>
</tr>
</tbody>
</table>
| K1 | Internal alarm signal relay
Relay data: 250 VAC, 1 A, AC1 |

4.2.1 Mains supply

POWER, terminals 1, 2 and PE

Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. You can connect each terminal to any of the two leads.

Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.

The maximum cross-section of the leads to be connected is 6 mm².

Backup fuse: Maximum 16 A.

Note You must not connect the leads of the mains supply to terminals 3 and 4.
4.2.2 Pump supply

PUMP, terminals 3, 4 and PE

Connect terminals 3 and 4 to the phase and neutral leads of the pump. You can connect each terminal to any of the two leads. Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.

The maximum cross-section of the leads to be connected is 6 mm².

4.2.3 Alarm signal relay

ALARM RELAY, terminals 5, 6 and 7

Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:

- Terminal 5 NC (normally closed).
- Terminal 6 COM (common).
- Terminal 7 NO (normally open).

The relay is activated when the alarm and warning limits are exceeded.

You can select manual or automatic restarting in the Grundfos GO display "Automatic restarting". Manual restarting is carried out by means of the On/Off button on CU 300.

4.2.4 Digital input

DIG IN, terminals 11, 12 and 13

In fig. 4, the digital input is used to start and stop the pump.

You can select the function of the digital input by means of the Grundfos GO in the display "Digital input".

4.3 Description of dry-running protection

When the pump sucks air, the pump power input decreases.

If the pump power input falls below the dry-running power limit set in the Grundfos GO display "Dry-running stop", the pump will stop and CU 300 will indicate the dry-running alarm.

4.3.1 Function

The dry-running protection applies only if the motor speed lies within the maximum speed range (i.e. maximum speed less than 1000 min⁻¹). See fig. 5. Normally, maximum speed is 10,700 min⁻¹. However, you can reduce the maximum speed in the Grundfos GO display "Maximum speed". The dry-running power limit set in the display "Dry-running stop" must match the speed.

Changing the setpoint:

If you use the Grundfos GO display "Setpoint" or "External setpoint" to change the setpoint, the pump can be forced to run at a reduced speed in relation to the maximum speed. The dry-running protection will not protect the pump if the reduced speed lies outside the maximum speed range (i.e. maximum speed less 1000 min⁻¹). See fig. 5.

Note

In certain installations, it may be necessary to disable the dry-running protection. The disabling applies to the dry-running power limit set in the display 15.2.21 Dry-running stop. See fig. 5.

Set the dry-running power limit in the display 15.2.21 Dry-running stop by following the procedure below:

- Start the pump against a closed discharge pipe.
- Read the input power (P1) in the display 15.1.9 Power consumption.
- Calculate the dry-running power limit: P1 x 0.9 [W].
- Set this value in the display 15.2.21 Dry-running stop.

Constant-pressure control

In constant-pressure control mode, the dry-running protection is active, as the motor will operate at maximum speed in connection with dry running.

Pump power input curve

The curve shows the pump power input in relation to the pump speed.

Set the dry-running power limit in the display 15.2.21 Dry-running stop by following the procedure below:

- Start the pump against a closed discharge pipe.
- Read the input power (P1) in the display 15.1.9 Power consumption.
- Calculate the dry-running power limit: P1 x 0.9 [W].
- Set this value in the display 15.2.21 Dry-running stop.
4.5 Description of the dewatering function
When the pump sucks air, the pump power input decreases.
If the pump power input falls below the dry-running power limit set in the display 15.2.21 Dry-running stop, the pump will stop.
During dewatering, the green indicator light in the On/Off button on CU 300 is flashing to indicate that the pump has stopped.

4.5.1 Applications
You can use the dewatering function in applications where the pump often runs dry, e.g.:
• In boreholes with a low yield.
• In boreholes and building sites where the water table should be lowered.

4.5.2 Function
The dewatering function works as follows:
1. The pump is operating.
2. The pump sucks air due to a drop in the water level.
3. The load decreases, and consequently the pump power input goes as well.
4. The pump stops when the power input falls to the dry-running power limit set in the Grundfos GO display 15.2.21 Dry-running stop.

The length of the stop time depends on the setting you have made in the Grundfos GO display "Dewatering max off time". See section 15.2.19 Dewatering, maximum "On" and "Off" time.

4.5.3 Required Grundfos GO settings
In order to activate the dewatering function, you must make the following Grundfos GO settings:
1. Set "Dry-running protection" to "Active".
2. Set the dry-running power limit, i.e. dry-running stop. See "Setting of dry-running power limit (dry-running stop)" below.
3. Set the relation between run and stop times.

Indication of operation:
The dry-running alarm indication on CU 300 is automatically disabled, when you make the setting in the display 15.2.19 Dewatering, maximum "On" and "Off" time.
To disable the dewatering function and return to dry-running protection, simply disable the "Dewatering" function in the display 15.2.18 Dewatering.

Setting of dry-running power limit (dry-running stop):
1. Start the pump against a closed discharge pipe.
2. Read the input power (P1) in the display 15.1.9 Power consumption.
3. Calculate the dry-running power limit: P1 x 0.9 [W].
4. Set this value in the display 15.2.21 Dry-running stop.

4.5.4 On/off times
The dewatering function means that there is a dependence between the period of time during which the pump is running, the on time, and the period of time during which the pump is stopped, the off time. Figure 6 shows an example of on and off times set in the display 15.2.19 Dewatering, maximum "On" and "Off" time.

![Fig. 6](image)

Explanation:
The on and off times are set to 60 minutes each. The pump has been running for 25 minutes when dry running occurs. The pump will be stopped for 35 minutes. If the pump has been running for e.g. 120 minutes, the stop time will be 1 minute.
5. CU 300 with constant-pressure control - 0 to 6 bar

5.1 Description
Using constant-pressure control enables automatic adjustment of the pump performance according to consumption. The system maintains a constant pressure within the maximum pump performance in spite of a varying water consumption.

Figure 7 shows an example of an installation with constant-pressure control within the range from 0 to 6 bar.

![Figure 7](image_url)

Fig. 7

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU 300</td>
</tr>
<tr>
<td>2</td>
<td>Diaphragm tank</td>
</tr>
<tr>
<td></td>
<td>Absorbs pressure variations.</td>
</tr>
<tr>
<td>3</td>
<td>Pressure sensor</td>
</tr>
<tr>
<td></td>
<td>The required pressure is set using the Grundfos GO.</td>
</tr>
</tbody>
</table>

5.2 Function
The pressure is registered by means of the pressure sensor, which transmits a signal to CU 300. CU 300 adjusts the pump performance accordingly by changing the pump speed.

Mains borne signalling
The communication between CU 300 and the pump is effected via the power supply cable.
This communication principle is called mains borne signalling or power line communication. Using this principle means that no additional cables to the pump are required.

The communication of data is effected by means of a high-frequency signal transmitted to the power supply cable and led into the electronics unit by means of signal coils incorporated in the motor and CU 300 respectively.

When does the pump start?
The pump starts as a consequence of:
- high flow
- low pressure
- a combination of both.

To ensure that the pump is started when water is consumed, a flow detection is required. The flow is detected via pressure changes in the system. When water is consumed, the pressure will drop accordingly depending on the size of the diaphragm tank and the water flow:
- At a low flow, the pressure will drop slowly.
- At a high flow, the pressure will drop quickly.

See fig. 8.

![Figure 8](image_url)

Fig. 8

When the pressure is dropping 0.1 bar/s or faster, the pump will start immediately.

If you use a diaphragm tank of 8 litres, the pump will start at a flow rate of approx. 0.18 m³/h.

If a you use a larger tank, the flow must be higher before the pump starts.

Consumption up to 0.18 m³/h
The pump will start when the pressure has dropped to 0.5 bar below the pressure setting.
The pump will run until the pressure is 0.5 bar above the pressure set.
Flow detection
During pump operation, i.e. when water is consumed, CU 300 will adjust the pump speed to maintain a constant pressure. In order to stop the pump when no water is consumed, CU 300 performs flow detection every 10 seconds.

The pump speed is reduced until a small pressure drop is registered. This pressure drop indicates that water is consumed and the pump speed is resumed. See fig. 9.

If the pump speed can be reduced without any pressure drop being registered, this indicates that no water is consumed. The diaphragm tank will be filled with water and the pump will be stopped.

Fig. 9

System limits
Even though CU 300 is controlling the pressure within ± 0.2 bar, bigger pressure variations may occur in the system.

If the consumption is suddenly changed, e.g. if a tap is opened, the water must start flowing before the pressure can be made constant again. Such dynamic variations depend on the pipework, but, typically, they will lie between 0.5 and 1 bar.

If the desired consumption is higher than the quantity the pump is able to deliver at the desired pressure, the pressure follows the pump curve as illustrated in fig. 10.

5.3 Positioning the pressure sensor
Pressure loss often causes inconvenience to the user. CU 300 keeps the pressure constant in the place where the pressure sensor is positioned. See fig. 11.

In fig. 11, tap 1 is placed close to the pressure sensor. Therefore, the pressure will be kept nearly constant at tap 1, as the friction loss is small. At the shower and tap 2, the friction loss is bigger. This, of course, depends on the piping. However, old and furred-up piping may cause inconvenience due to friction loss.

Therefore, we recommend that you position the pressure sensor as close to the places of consumption as possible.

5.4 System sizing

Warning
The installation must be designed for the maximum pump pressure.

In normal installations with CU 300 and an SQE pump set to constant-pressure control, the required tank size is 8 litres. You can use bigger tanks without causing any problems.
5.5 Electrical installation

Warning
Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

Fig. 12

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure sensor, brown lead, terminal 14</td>
</tr>
<tr>
<td>2</td>
<td>Pressure sensor, black lead, terminal 15</td>
</tr>
<tr>
<td>3</td>
<td>Pressure sensor, screen, terminal GND</td>
</tr>
<tr>
<td>4</td>
<td>Pressure sensor Must be connected to analog input 1.</td>
</tr>
<tr>
<td>H</td>
<td>Alarm signal transmitter (optional).</td>
</tr>
<tr>
<td>K1</td>
<td>Internal alarm signal relay Relay data: 250 VAC, 1 A, AC1</td>
</tr>
</tbody>
</table>
5.5.1 Mains supply
POWER, terminals 1, 2 and PE
Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².
Backup fuse: Maximum 16 A.

5.5.2 Pump supply
PUMP, terminals 3, 4 and PE
Connect terminals 3 and 4 to the phase and neutral leads of the pump. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².

5.5.3 Alarm signal relay
ALARM RELAY, terminals 5, 6 and 7
Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:
• Terminal 5 NC (normally closed).
• Terminal 6 COM (common).
• Terminal 7 NO (normally open).
The relay operates when the alarm and warning limits are exceeded.
You can select manual or automatic restarting in the Grundfos GO display "Automatic restarting".
Manual restarting is carried out by means of the On/Off button on CU 300.

5.5.4 Required Grundfos GO settings
You must make the following Grundfos GO settings:
1. In display "Control mode" select "Closed loop".
2. Set the sensor in the "Analog input 1" or "Analog input 2" display.
 Example:
 – sensor output signal (4-20 mA)
 – setting range unit (m)
 – setting range - head
 min.: 0.0
 max.: 40
3. Set the stop type in the "Stop type, sensor 1" display.
 – "Fill".
4. Set the digital input.
 – "Not active"
5. Set the setpoint
 Example: Desired head 35 m.
 Rule: The maximum setting of the setpoint corresponds to the maximum value set in display 15.2.4 Analog inputs less 5 m.
 In this case, 40 less 5 = 35 m.

5.6 Startup
Prior to startup, the precharge pressure of the diaphragm tank must be set to 70 % of the setpoint set in the Grundfos GO display "Setpoint".

Note
You must not connect the leads of the mains supply to terminals 3 and 4.
6. CU 300 with constant-pressure control - 0 to 10 bar

6.1 Description

Using constant-pressure control enables automatic adjustment of the pump performance according to consumption. The system maintains a constant pressure within the maximum pump performance in spite of a varying water consumption.

Figure 13 shows an example of an installation with constant-pressure control within the range from 0 to 10 bar.

Fig. 13

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU 300</td>
</tr>
<tr>
<td>2</td>
<td>Diaphragm tank</td>
</tr>
<tr>
<td></td>
<td>Absorbs pressure variations.</td>
</tr>
<tr>
<td>3</td>
<td>Flow switch</td>
</tr>
<tr>
<td></td>
<td>The pump starts at once when water is consumed</td>
</tr>
<tr>
<td></td>
<td>at the taps.</td>
</tr>
<tr>
<td>4</td>
<td>Pressure sensor</td>
</tr>
<tr>
<td></td>
<td>The required pressure is set using the Grundfos</td>
</tr>
<tr>
<td></td>
<td>GO.</td>
</tr>
</tbody>
</table>

6.2 Function

The pressure is registered by means of the pressure sensor and transmitted to CU 300. CU 300 adjusts the pump performance accordingly. To ensure that the pump is started when water is consumed, include a flow switch in the system.

The required pressure (setpoint) is set in the Grundfos GO display "Setpoint".

- **Consumption up to 0.18 m³/h.**
 - The flow switch contact is open.
 - The pump starts when the pressure is equal to the setpoint less 0.5 bar. The pump will fill the tank and stop when the pressure is equal to the setpoint plus 0.5 bar. Consequently, the pump runs on/off operation.

- **Consumption above 0.18 m³/h.**
 - The flow switch contact is closed.
 - The pump starts when the flow switch contact closes and the speed control ensures that the pressure is kept constant. If the flow is below 0.18 m³/h and the flow switch contact is opened, the tank is filled to a pressure equal to the setpoint plus 0.5 bar. When this pressure is reached, the pump stops. Stopping is a combination of the flow switch contact opening and the pressure being equal to the setpoint plus 0.5 bar.

If the flow is larger than the quantity the pump is able to deliver at the desired pressure, the pressure follows the pump curve as illustrated in fig. 14.

Fig. 14

A = Required pressure
6.3 Positioning the pressure sensor

Pressure loss often causes inconvenience to the user. CU 300 keeps the pressure constant in the place where the pressure sensor is positioned. See fig. 15.

In fig. 15, tap 1 is placed close to the pressure sensor. Therefore, the pressure will be kept nearly constant at tap 1, as the friction loss is small. At the shower and tap 2, the friction loss is bigger. This, of course, depends on the piping. However, old and furred-up piping may cause inconvenience due to friction loss.

Therefore, we recommend that you position the pressure sensor as close to the places of consumption as possible.

6.4 System sizing

Warning

The installation must be designed for the maximum pump pressure.

In normal installations with CU 300 and an SQE pump set to constant-pressure control, the required tank size is 8 litres. You can use bigger tanks without causing any problems.
6.5 Electrical installation

Warning
Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

Fig. 16

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure sensor, brown lead, terminal 14</td>
</tr>
<tr>
<td>2</td>
<td>Pressure sensor, black lead, terminal 15</td>
</tr>
<tr>
<td>3</td>
<td>Pressure sensor, screen, terminal GND</td>
</tr>
<tr>
<td>4</td>
<td>Pressure sensor Must be connected to analog input 1.</td>
</tr>
<tr>
<td>5</td>
<td>Diaphragm tank connection</td>
</tr>
<tr>
<td>6</td>
<td>Flow switch Must be connected to the digital input, terminals 12 and 13. Cannot be connected wrongly.</td>
</tr>
<tr>
<td></td>
<td>H Alarm signal transmitter (optional)</td>
</tr>
<tr>
<td>K1</td>
<td>Internal alarm signal relay</td>
</tr>
<tr>
<td></td>
<td>Relay data: 250 VAC, 1 A, AC1</td>
</tr>
</tbody>
</table>
6.5.1 Mains supply

POWER, terminals 1, 2 and PE

Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. You can connect each terminal to any of the two leads.

Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.

Maximum cross-section of the leads to be connected is 6 mm².

Backup fuse: Maximum 16 A.

Note You must not connect the leads of the mains supply to terminals 3 and 4.

6.5.2 Pump supply

PUMP, terminals 3, 4 and PE

Connect terminals 3 and 4 to the phase and neutral leads of the pump. You can connect each terminal to any of the two leads.

Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.

Maximum cross-section of the leads to be connected is 6 mm².

6.5.3 Alarm signal relay

ALARM RELAY, terminals 5, 6 and 7

Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:

- Terminal 5 NC (normally closed).
- Terminal 6 COM (common).
- Terminal 7 NO (normally open).

The relay operates when the alarm and warning limits are exceeded.

You can select manual or automatic restarting in the Grundfos GO display "Automatic restarting".

6.5.4 Required Grundfos GO settings

You must make the following Grundfos GO settings:

1. In display 15.2.2 Control mode select "Closed loop".

2. Set the sensor in the "Analog input 1" or "Analog input 2" display.
 - Example:
 - sensor output signal (4-20 mA)
 - setting range unit (m)
 - setting range - head
 min.: 0.0
 max.: 40.

3. Set the stop type in the "Stop type, sensor 1" display.
 - "Fill".

4. Set the digital input.
 - "Not active"

5. Set the setpoint
 - Example: Desired head 35 m.
 - Rule: The maximum setting of the setpoint corresponds to the maximum value set in display "Analog input 1" less 5 m.
 - In this case, 40 less 5 = 35 m.

6.6 Startup

Prior to startup, the precharge pressure of the diaphragm tank must be set to 70 % of the setpoint set in the Grundfos GO display "Setpoint".
7. CU 300 with constant-pressure control - two-pump operation

7.1 Description
Using constant-pressure control in connection with two-pump operation enables automatic adjustment of the pump performance according to the consumption in systems where a high flow is required. The system maintains a constant pressure within the maximum pump performance in spite of a varying water consumption.

During two-pump operation, the two pumps must have the same nominal flow, e.g. two SQE 2.

Figure 17 shows an example of a two-pump installation with constant-pressure control.

![Fig. 17](image_url)

7.2 Function
The pressure is registered by means of the pressure sensor and transmitted to CU 300 (master). CU 300 adjusts the pump speed to ensure that the pressure is kept constant. To ensure that the pump connected to CU 300 (master) is started when water is consumed, a flow switch must be included in the system.

Set CU 300 (master) to the desired pressure (setpoint) in the Grundfos GO display "Setpoint".

- **Consumption up to 0.18 m³/h.**
 The flow switch contact is open.
 The pump connected to CU 300 (master) starts when the pressure is equal to the setpoint less 0.5 bar. The pump will fill the tank and stop when the pressure is equal to the setpoint plus 0.5 bar. Consequently, the pump runs on/off operation.

- **Consumption above 0.18 m³/h.**
 The flow switch contact is closed.
 The pump connected to CU 300 (master) starts when the flow switch contact closes and the speed control ensures that the pressure is kept constant.
 If the flow is lower than 0.18 m³/h and the flow switch contact is opened, the tank is filled to a pressure equal to the setpoint plus 0.5 bar. When this pressure is reached, the pump stops. Stopping is a combination of the flow switch contact opening and the pressure being equal to the setpoint plus 0.5 bar. If the consumption exceeds the quantity the pump connected to CU 300 (master) is able to deliver, the pressure in the diaphragm tank will fall.

Table: Pos. Description

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1A, 1B | 1A = CU 300 (master)
1B = CU 300 (slave) |
| 2 | Diaphragm tank, minimum 24 litres
Absorbs pressure variations. |
| 3 | Flow switch
The pump starts at once when water is consumed at the taps. |
| 4 | Pressure sensor
The required pressure is set using the Grundfos GO. |
The pump connected to CU 300 (slave) will be started in the two following situations:
1. If the pressure in the diaphragm tank falls to 1 bar below the setpoint.
2. If the pump connected to CU 300 (master) has been operating at maximum performance for more than 5 seconds and the water requirement has increased.

The pump connected to CU 300 (slave) will be stopped in the three following situations:
1. If the system pressure is 1 bar higher than the setpoint.
2. If the pump connected to CU 300 (master) has been operating at minimum performance for more than 5 seconds and the water requirement has fallen.
3. If the flow switch indicates "No flow" and the system pressure is 0.5 bar higher than the setpoint.

If the flow is larger than the quantity the pumps are able to deliver at the desired pressure, the pressure follows the pump curve. See fig. 18.

7.3 Positioning the pressure sensor
See section 6.3 Positioning the pressure sensor.

7.4 System sizing

⚠️ Warning
The installation must be designed for the maximum pump pressure.

In two-pump installations set for constant-pressure control, the required tank size is 24 litres. You can use bigger tanks without any problems.

Fig. 18

A = Required pressure
7.5 Electrical installation

Warning

Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

Fig. 19

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CU 300 (master)</td>
</tr>
<tr>
<td>B</td>
<td>CU 300 (slave)</td>
</tr>
<tr>
<td>C</td>
<td>Installation for Q < 5 m³/h</td>
</tr>
<tr>
<td>D</td>
<td>Installation for Q > 5 m³/h</td>
</tr>
<tr>
<td>1</td>
<td>Pressure sensor, brown lead, terminal 14</td>
</tr>
<tr>
<td>2</td>
<td>Pressure sensor, black lead, terminal 15</td>
</tr>
<tr>
<td>3</td>
<td>Pressure sensor, screen, terminal GND</td>
</tr>
<tr>
<td>4</td>
<td>Pressure sensor Must be connected to analog input 1.</td>
</tr>
<tr>
<td>5</td>
<td>Diaphragm tank connection</td>
</tr>
<tr>
<td>6</td>
<td>Flow switch (Q < 5 m³/h) Must be connected to the digital input, terminals 12 and 13. Cannot be connected wrongly.</td>
</tr>
<tr>
<td>7</td>
<td>Flow switch (Q > 5 m³/h) Must be connected to the digital input, terminals 12 and 13. Cannot be connected wrongly.</td>
</tr>
<tr>
<td>K1</td>
<td>Internal alarm signal relay Relay data: 250 VAC, 1 A, AC1</td>
</tr>
</tbody>
</table>
7.5.1 Auxiliary relay
Connect CU 300 (master) to CU 300 (slave) as follows:

- **Connections**

<table>
<thead>
<tr>
<th>CU 300 (master)</th>
<th>CU 300 (slave)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 9 (COM)</td>
<td>Terminal 12 (IN)</td>
</tr>
<tr>
<td>Terminal 10 (NO)</td>
<td>Terminal 13 (GND)</td>
</tr>
</tbody>
</table>

See fig. 19.

7.5.2 Mains supply
POWER, terminals 1, 2 and PE
Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. See fig. 19.
You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².
Backup fuse: Maximum 16 A.

- **Note** You must not connect the leads of the mains supply to terminals 3 and 4.

7.5.3 Pump supply
PUMP, terminals 3, 4 and PE
Connect terminals 3 and 4 to the phase and neutral leads of the pump. See fig. 19.
You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².

7.5.4 Alarm signal relay
ALARM RELAY, terminals 5, 6 and 7
Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:
- Terminal 5 NC (normally closed).
- Terminal 6 COM (common).
- Terminal 7 NO (normally open).
The relay operates when the alarm and warning limits are exceeded.
You can select manual or automatic restarting in the Grundfos GO display "Automatic restarting".
Manual restarting is carried out by means of the On/Off button on CU 300.

7.5.5 Flow switch and pressure sensor
Connect the flow switch and the pressure sensor to the control unit (A = master) as illustrated in fig. 19.

Flow switch:

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQE 1</td>
<td>96037332</td>
</tr>
<tr>
<td>SQE 2, SQE 3, SQE 5, SQE 7</td>
<td>96037559</td>
</tr>
</tbody>
</table>

7.5.6 Required Grundfos GO settings
You must make the following Grundfos GO settings on CU 300 (master):
1. In display "Control mode" select "Closed loop".
2. Set the sensor in the "Analog input 1" or "Analog input 2" display.
 Example:
 - sensor output signal (4-20 mA)
 - setting range unit (m)
 - setting range - head min.: 0.0
 - max.: 40.
3. Set the stop type in the "Stop type, sensor 1" display.
 - "Fill".
4. Set the digital input in "Digital input 1" display:
 - "Start".
5. Set the setpoint
 Example: Desired head 35 m.
 Rule: The maximum setting of the setpoint corresponds to the maximum value set in display 15.2.4 Analog inputs less 5 m.
 In this case, 40 less 5 = 35 m.
You must make the following Grundfos GO setting on CU 300 (slave):
6. Set the digital input in "Digital input 1" display:
 - "Start"

7.6 Startup
Prior to startup, you must set the precharge pressure of the diaphragm tank to 70 % of the setpoint set in the Grundfos GO display "Setpoint".
8. CU 300 with sensors

8.1 General
CU 300 can be used in systems with one to three sensors connected. Figure 20 shows an example of an installation incorporating sensors.

You can set the alarm, warning and stop limits individually for all sensors connected. The limit settings do not influence each other, and each setting offers its own functioning. Figure 21 shows a schematic presentation of the setting of maximum and minimum limits for alarm, warning and stop respectively.

![Diagram of CU 300 with sensors](image)

Fig. 20

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU 300</td>
</tr>
<tr>
<td>2</td>
<td>pH sensor</td>
</tr>
<tr>
<td></td>
<td>Detects the water quality.</td>
</tr>
<tr>
<td>3</td>
<td>Pulse flow meter</td>
</tr>
<tr>
<td></td>
<td>Detects the water quantity.</td>
</tr>
<tr>
<td>4</td>
<td>Level sensor</td>
</tr>
</tbody>
</table>

Fig. 21

You must only set the limits applying to the selected sensor.
These settings are made in the displays 15.2.4 Analog inputs and 15.2.5 Limits, sensor 1 and 2 to 15.2.5 Limits, sensor 1 and 2.
8.2 Sensor functioning

8.2.1 Alarm limits
When an alarm limit is exceeded, the following takes place:
1. The pump is stopped.
2. The alarm signal relay operates.
3. The "Sensor alarm" indicator light on CU 300 is on.
4. The alarm appears in the Grundfos GO display "Alarms and warnings".
If the pump has stopped already or if the alarm signal relay has operated, this condition is maintained.

8.2.2 Warning limits
When a warning limit is exceeded, the following takes place:
1. The alarm signal relay operates.
2. Pump operation is continued. No "Sensor alarm" indication.
3. The warning appears in the Grundfos GO display "Alarms and warnings".

8.2.3 Start and stop limits
Start and stop limits must be used in connection with the emptying and filling of e.g. water tanks.
The start and stop function depends on the application, i.e. emptying or filling.

• Emptying means that the pump must start at a given maximum water level and stop at a given minimum water level. See fig. 22.

• Filling means that the pump must start at a given minimum water level and stop at a given maximum water level. See fig. 23.
8.3 Electrical installation

Warning

Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

Fig. 24

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Analog sensor, output signal 4-20 mA</td>
</tr>
<tr>
<td>A2</td>
<td>Analog sensor, output signal 0-20 mA</td>
</tr>
<tr>
<td>A3</td>
<td>Analog sensor, output signal 0-10/2-10 V</td>
</tr>
<tr>
<td>D1</td>
<td>Digital sensor, NO (normally open)</td>
</tr>
<tr>
<td>D1</td>
<td>Digital sensor, NC (normally closed)</td>
</tr>
<tr>
<td>H</td>
<td>Alarm signal transmitter (optional)</td>
</tr>
<tr>
<td>K1</td>
<td>Internal alarm signal relay</td>
</tr>
<tr>
<td></td>
<td>Relay data: 250 VAC, 1 A, AC1</td>
</tr>
</tbody>
</table>
8.3.1 Mains supply
POWER, terminals 1, 2 and PE
Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².
Backup fuse: Maximum 16 A.

Note: You must not connect the leads of the mains supply to terminals 3 and 4.

8.3.2 Pump supply
PUMP, terminals 3, 4 and PE
Connect terminals 3 and 4 to the phase and neutral leads of the pump. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².

8.3.3 Alarm signal relay
ALARM RELAY, terminals 5, 6 and 7
Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:
- Terminal 5 NC (normally closed).
- Terminal 6 COM (common).
- Terminal 7 NO (normally open).
The relay operates when the alarm and warning limits are exceeded.
You can select manual or automatic restarting in the Grundfos GO display "Automatic restarting".
Manual restarting is carried out by means of the On/Off button on CU 300.

8.3.4 Sensors
SENSOR 1 and SENSOR 2, terminals 14, 15, 16, 17, 18 and 19:
Terminals 14, 15 and 16 (SENSOR 1) and terminals 17, 18 and 19 (SENSOR 2) are used for external sensors, e.g. a pressure gauge, a flow meter or another type of sensor.
You set the limits for the signal from an external sensor in the Grundfos GO in the "Analog input 1" and "Analog input 2" displays.
You can use the signal to do the following:
- To start and stop the motor.
- To operate the alarm signal relay, without stopping the motor.
The sensors must give signals within the ranges 0-20 or 4-20 mA, 0-10 or 2-10 VDC. Changeover between current and voltage signals is carried out by means of the Grundfos GO.
The total load of terminals 11, 14 and 17 (+24 VDC) must not exceed 100 mA.

8.3.5 Required Grundfos GO settings
You must make the following Grundfos GO settings:
1. Set "Analog input 1".
 - sensor output signal (4-20 mA)
 - setting range unit (m)
 - setting range - head min.: 0.0
 max.: 50.
2. Set "Analog input 2" to "Not active".
3. Set the minimum stop value for sensor 1 in display "Min. stop value, sensor 1".
4. Set the maximum stop value for sensor 1 in display "Max. stop value, sensor 1".
5. Set the "Warning limits" and "Alarm limits" for sensor 1 in display "Limits, sensor 1".
6. Set the desired stop type in display "Stop type, sensor 1".
 Example:
 - "Fill".

Note: You must not connect the leads of the mains supply to terminals 3 and 4.
9. CU 300 connected to potentiometer

9.1 Description
Using an external potentiometer enables:
- Manual control of the motor speed, and thereby of pump performance.
- Manual starting/stopping of the pump.

Manual starting/stopping of the pump.

![Diagram](image)

Fig. 25

To stop the pump, turn the potentiometer (SPP 1) to "STOP".

Figure 25 shows an example of an installation with a potentiometer.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU 300</td>
</tr>
<tr>
<td>2</td>
<td>External Grundfos potentiometer, SPP 1. The required flow is obtained by changing the motor speed manually using the external potentiometer.</td>
</tr>
<tr>
<td>3</td>
<td>Water tank</td>
</tr>
</tbody>
</table>
9.2 Electrical installation

Warning

Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

Fig. 26

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
</table>
| K1 | Internal alarm signal relay
Relay data: 250 VAC, 1 A, AC1 |
| H | Alarm signal transmitter (optional) |
| SPP 1| External Grundfos potentiometer, SPP 1 |
9.2.1 Mains supply
POWER, terminals 1, 2 and PE
Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².
Backup fuse: Maximum 16 A.

Note: You must not connect the leads of the mains supply to terminals 3 and 4.

9.2.2 Pump supply
PUMP, terminals 3, 4 and PE
Connect terminals 3 and 4 to the phase and neutral leads of the pump. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².

9.2.3 Alarm signal relay
ALARM RELAY, terminals 5, 6 and 7
Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:
• Terminal 5 NC (normally closed).
• Terminal 6 COM (common).
• Terminal 7 NO (normally open).
The relay operates when the alarm and warning limits are exceeded.
You can select manual or automatic restarting in the Grundfos GO display "Automatic restarting".
Manual restarting is carried out by means of the On/Off button on CU 300.

9.2.4 Potentiometer SPP 1
Connections between the SPP 1 and CU 300:

<table>
<thead>
<tr>
<th>SPP 1</th>
<th>CU 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17 (SENSOR 2 +24 VDC)</td>
</tr>
<tr>
<td>2</td>
<td>19 (SENSOR 2 GND)</td>
</tr>
<tr>
<td>3</td>
<td>12 (DIG IN)</td>
</tr>
<tr>
<td>4</td>
<td>18 (SENSOR 2 IN)</td>
</tr>
</tbody>
</table>

9.2.5 Required Grundfos GO settings
You must make the following Grundfos GO settings:
1. In display "Control mode" select "Open loop".
2. Set the external setpoint to "SPP 1", enabling speed control using the SPP 1. "Analog input 2" is set to "SPP 1".
3. Set "Digital input 1" to "Start"

10. CU 300 connected to water meter

10.1 Description
Using a water meter (pulse flow meter) enables:
• Monitoring of the flow.
• Stop of pump after a given quantity of water has been pumped.
• Indication of accumulated flow and the energy consumption required to pump 1 m³.
Figure 27 shows an example of an irrigation system incorporating a water meter.

![Fig. 27](image-url)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU 300</td>
</tr>
<tr>
<td>2</td>
<td>Water meter (pulse flow meter)</td>
</tr>
</tbody>
</table>
10.2 Electrical installation

Warning

Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

Fig. 28

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Water meter (pulse flow meter)</td>
</tr>
<tr>
<td>H</td>
<td>Alarm signal transmitter (optional)</td>
</tr>
<tr>
<td>K1</td>
<td>Internal alarm signal relay</td>
</tr>
<tr>
<td></td>
<td>Relay data: 250 VAC, 1 A, AC1</td>
</tr>
</tbody>
</table>

10.2.1 Mains supply

POWER, terminals 1, 2 and PE

Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. You can connect each terminal to any of the two leads.

Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.

Maximum cross-section of the leads to be connected is 6 mm².

Backup fuse: Maximum 16 A.

Note

You must not connect the leads of the mains supply to terminals 3 and 4.
10.2.2 Pump supply

PUMP, terminals 3, 4 and PE
Connect terminals 3 and 4 to the phase and neutral leads of the pump. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².

10.2.3 Alarm signal relay

ALARM RELAY, terminals 5, 6 and 7
Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:
• Terminal 5 NC (normally closed).
• Terminal 6 COM (common).
• Terminal 7 NO (normally open).
The relay operates when the alarm and warning limits are exceeded.
You can select manual or automatic restarting in the Grundfos GO display "Automatic restarting". Manual restarting is carried out by means of the On/Off button on CU 300.

10.2.4 Water meter (pulse flow meter)

DIG IN, terminals 12 and 13
Connect terminals 12 and 13 to the water meter:
• Terminal 12 IN (signal input).
• Terminal 13 GND (earth).

10.2.5 Required Grundfos GO settings
You must make the following Grundfos GO settings:
1. Set "Digital input 1".
 – Function: "Pulse-flow meas."
2. Set "Flow per pulse":
 Example: "10 l/pulse".
When you have set a value in this display, the actual flow will appear in status display "Digital input". You must only set a value in the display "Stop limit, accum. flow" if stop of pump after a given quantity of water has been pumped is required.
Example:
• Stop limit, accum. flow: "7.5 m³".
• Sensor, accum. flow stop: "Digital input".
When you have set a value in this display, the "Accumulated flow" and "Energy per m³" will appear in the status displays "Accumulated flow" and "Specific energy".

11. Constant water level

11.1 Description
The water level can be kept constant by connecting an analog level sensor.
Figure 29 shows an example of an installation designed for maintaining a constant water level in the borehole.

Fig. 29

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU 300</td>
</tr>
<tr>
<td>2</td>
<td>Level sensor</td>
</tr>
</tbody>
</table>

11.2 Function
CU 300 controls the pump speed and consequently adjusts the pump performance to the borehole yield.
1. When the water level is much higher than the desired level (setpoint), the pump is running at maximum performance.
2. When the level is coming closer to the desired level, the pump performance will be reduced.
3. When the desired level is reached, the pump speed will be so low that the pump performance is zero. After further 60 seconds, the pump will stop.
11.3 Electrical installation

Warning
Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

![Diagram of CU 300 unit connections]

Fig. 30

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connection of level sensor:</td>
</tr>
<tr>
<td></td>
<td>• Terminal 14, 24 VDC supply</td>
</tr>
<tr>
<td></td>
<td>• Terminal 15, signal input</td>
</tr>
</tbody>
</table>
11.3.1 Mains supply

POWER, terminals 1, 2 and PE
Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².
Backup fuse: Maximum 16 A.

Note You must not connect the leads of the mains supply to terminals 3 and 4.

11.3.2 Pump supply

PUMP, terminals 3, 4 and PE
Connect terminals 3 and 4 to the phase and neutral leads of the pump. You can connect each terminal to any of the two leads.
Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own.
Maximum cross-section of the leads to be connected is 6 mm².

11.3.3 Alarm signal relay

ALARM RELAY, terminals 5, 6 and 7
Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:
- Terminal 5 NC (normally closed).
- Terminal 6 COM (common).
- Terminal 7 NO (normally open).
The relay operates when the alarm and warning limits are exceeded. See section 15.2.5 Limits, sensor 1 and 2.

11.3.4 Digital input
Connect terminals 12 and 13 with a short piece of wire to create a short circuit between them.

11.3.5 Level sensor
Connect terminals 14 and 15 to the level sensor:
- Terminal 14, 24 VDC (voltage supply).
- Terminal 15, IN (signal input).

11.3.6 Required Grundfos GO settings
You must make the following Grundfos GO settings:
1. In display "Control mode" select "Closed loop".
2. Set "Analog input 1".
 Example:
 - sensor output signal (4-20 mA),
 - setting range unit (m)
 - setting range - head
 Min.: 0.0
 Max.: 60.
 - Set the stop type.
 - Sensor 1: "Empty".
3. Set the "Setpoint" e.g. desired water level (m).
 Example: 55 m.
 - Rule: The maximum setting of the setpoint corresponds to the maximum value set in display "Analog input 1" less 5 m.
 In this case, 60 less 5 = 55 m.
 The water level can be kept within a tolerance of ± 1 % of the setting range.
4. Set "Digital input 1".
 - "Start".
12. CU 300 connected to RS-485

12.1 Description
Using the RS-485 input enables:
- communication via Grundfos fieldbus GENIbus
- connection to the Grundfos Remote Management (CIU 270) gateway for communication over long distances.

12.2 CU 300 connected to a PC directly
Figure 31 shows an example of an installation which is connected to a PC directly via the PC Tool link and GENIbus.

The installation shown in the example enables configuration, fault finding and servicing of the installation by means of a PC with a PC Tool CU 300 software. See fig. 31.

![Fig. 31](image)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU 300</td>
</tr>
<tr>
<td>2</td>
<td>E.g. a pH sensor for monitoring of water quality</td>
</tr>
<tr>
<td>3</td>
<td>Level sensor</td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
</tr>
<tr>
<td>5</td>
<td>PC Tool Link</td>
</tr>
</tbody>
</table>

CU 300 connected to GENIbus network:
Figure 32 shows an example of an installation connected to a GENIbus network with two CU 300 installations via the RS-485 input. The GENIbus network is connected to Grundfos Remote Management (CIU 270) through a PC with internet access.

The installation shown in the example enables configuration, fault finding, servicing, data logging of the connected installations over long distances. See fig. 32.

You can connect and communicate with up to 32 GENIbus units on one network.

The units can be:
- CU 300 units only
- CU 300 units in combination with other Grundfos products with GENIbus connection.

Contact Grundfos for further details.

![Fig. 32](image)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU 300</td>
</tr>
<tr>
<td>2</td>
<td>CIU 270</td>
</tr>
<tr>
<td>3</td>
<td>PC</td>
</tr>
</tbody>
</table>
12.3 Electrical installation

Warning
Never make any connections in the CU 300 unit unless the power supply has been switched off. CU 300 must be connected in accordance with the rules and standards in force for the application in question.

The supply voltage and frequency are marked on the nameplate. Make sure that CU 300 is suitable for the power supply on which it will be used.

Fig. 33

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485</td>
<td>Connection of RS-485, GENIbus</td>
</tr>
</tbody>
</table>
12.3.1 Mains supply
POWER, terminals 1, 2 and PE
Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. You can connect each terminal to any of the two leads. Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own. Maximum cross-section of the leads to be connected is 6 mm². Backup fuse: Maximum 16 A.

Note You must not connect the leads of the mains supply to terminals 3 and 4.

12.3.2 Pump supply
PUMP, terminals 3, 4 and PE
Connect terminals 3 and 4 to the phase and neutral leads of the pump. You can connect each terminal to any of the two leads. Connect the PE terminal to the green/yellow earth lead. You must connect each PE terminal to an earth lead of its own. Maximum cross-section of the leads to be connected is 6 mm².

12.3.3 Alarm signal relay
ALARM RELAY, terminals 5, 6 and 7
Connect terminals 5, 6 and 7 to the internal alarm signal relay as follows:
• Terminal 5 NC (normally closed).
• Terminal 6 COM (common).
• Terminal 7 NO (normally open).
The relay operates when the alarm and warning limits are exceeded.
You can select manual or automatic restarting in the Grundfos GO display "Automatic restarting".
Manual restarting is carried out by means of the On/Off button on CU 300.

12.3.4 RS-485 input
The RS-485 input, terminals A, Y (GND) and B, is for external bus communication.
The communication is effected according to the Grundfos bus protocol, GENIbus, and is two-way communication.
CU 300 can communicate with a PC with the PC Tool CU 300 installed.
You need a PC Tool link adapter to communicate with a PC. Connect the adaptor to CU 300, terminals A, Y (GND) and B, for direct communication with a PC on a GENIbus network.
The PC Tool CU 300 enables configuration, monitoring and fault finding of the actual installation.
The RS-485 input is a low-voltage circuit. Therefore, you must separate all connections to terminals A, Y (GND) and B from network circuits by means of double or reinforced insulation.
A screened, twisted-pair cable is required. The maximum cable length is 1200 m.
13. Alarm functions

13.1 No contact
The connection and/or communication between CU 300 and the motor is not established. "No contact" is permanently on. See fig. 34.

![Fig. 34](TM01 2782 0415)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor is not an MSE 3 motor.</td>
<td>Install an MSE 3 motor.</td>
</tr>
<tr>
<td>Motor is not connected.</td>
<td>Check connections.</td>
</tr>
<tr>
<td>Cable breakage.</td>
<td>Check cable.</td>
</tr>
<tr>
<td>Poor or no connection.</td>
<td>Check connections.</td>
</tr>
<tr>
<td>The cable length exceeds 200 m.</td>
<td>Reduce cable length.</td>
</tr>
<tr>
<td>CU 300 is defective.</td>
<td>Replace CU 300.</td>
</tr>
<tr>
<td>The motor is defective.</td>
<td>Replace motor.</td>
</tr>
</tbody>
</table>

Important:
The alarm indication "No contact" will also appear if the pump and CU 300 do not have the same number (allocated by the Grundfos GO). The problem may occur e.g. in connection with replacing a motor or a CU 300.

Solution:
The pump and CU 300 must be allocated the same number via the Grundfos GO display "Number".
The alarm "No contact" makes the On/Off button on CU 300 inactive, and actual operating parameters cannot be called up. However, installation parameters can be called up.
"No contact" does not cause a pump stop.

13.2 Overvoltage
The supply voltage to the motor exceeds the maximum value allowed.
For more information about factory settings, see section 16. Technical data.
The motor is stopped and "Overvoltage" is permanently on. See fig. 35.

![Fig. 35](TM01 2783 0415)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable power supply.</td>
<td>Contact the power supply authorities.</td>
</tr>
<tr>
<td>Too high supply voltage.</td>
<td>Contact the power supply authorities. Check installation.</td>
</tr>
<tr>
<td>Supply voltage outside voltage range of motor.</td>
<td>Check installation.</td>
</tr>
</tbody>
</table>

Restarting
When the supply voltage lies within the voltage range of the motor, the motor will restart automatically.
13.3 Undervoltage
The supply voltage to the motor is lower than the minimum value allowed.
For more information about the factory setting, see section 16. Technical data.
The motor is stopped and "Undervoltage" is permanently on. See fig. 36.

![Fig. 36]

Possible cause	Remedy
Unstable power supply. | Contact the power supply authorities.
Supply voltage outside voltage range of motor. | Check installation.
Voltage drop in mains is too big. | Increase wire cross-section.

Restarting
When the supply voltage lies within the voltage range of the motor, the motor will restart automatically.

13.4 Dry running
The purpose of the dry-running protection is to protect the pump in case of insufficient water flow.
The dry-running protection makes the conventional dry-running protection unnecessary.
No additional cables to the motor are required.
The dry-running alarm is activated when the load has been below the dry-running power limit for an accumulated time of 5 seconds.
The motor is stopped and "Dry running" is permanently on. See fig. 37.

![Fig. 37]

Possible cause	Remedy
The pump performance is too high compared to the borehole yield. | Replace pump with a smaller one.
Borehole filter is blocked. | Borehole service is required.

Restarting
After 5 minutes (factory setting), or the period set by means of the Grundfos GO display "Automatic restarting", the motor will restart automatically.
13.5 Speed reduction
At a moderate undervoltage or overload of the motor, the speed is reduced, but the motor is not stopped. The speed reduction indicator light is on, and at the same time the undervoltage or overload light is on. "Speed reduction" and "Undervoltage" or "Overload" are permanently on.
In fig. 38, the "Speed reduction" alarm was caused by undervoltage.

![Fig. 38](image)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump is worn, causing overload.</td>
<td>Pump must be serviced.</td>
</tr>
<tr>
<td>Wrong combination of pump and motor,</td>
<td>Replace pump or motor.</td>
</tr>
<tr>
<td>causing overload.</td>
<td></td>
</tr>
<tr>
<td>Unstable power supply,</td>
<td>Contact the power supply authorities.</td>
</tr>
<tr>
<td>causing undervoltage.</td>
<td></td>
</tr>
<tr>
<td>Too big voltage drop</td>
<td>Size cable to avoid too big voltage drop.</td>
</tr>
<tr>
<td>over the cable, causing undervoltage.</td>
<td></td>
</tr>
</tbody>
</table>

Speed resuming
When the supply voltage lies within the voltage range of the motor again and the cause of the overload has disappeared, the motor resumes normal speed.

13.6 Overtemperature
The motor temperature is monitored continuously during operation.
The motor is factory-set to a maximum value. See section 16. Technical data.
The motor temperature has exceeded the maximum temperature limit. If the temperature is too high, there is a risk that the motor electronics will be damaged.
The motor is stopped and "Overtemperature" is permanently on. See fig. 39.

![Fig. 39](image)

A too high operating temperature may indicate that the installation needs service.

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient cooling or flow velocity along motor.</td>
<td>Take out pump and install flow sleeve.</td>
</tr>
<tr>
<td>Insufficient cooling due to incrustation of the</td>
<td>Clean motor. Install flow sleeve.</td>
</tr>
<tr>
<td>motor.</td>
<td></td>
</tr>
</tbody>
</table>

Restarting
When the motor electronics has cooled sufficiently, the motor will restart automatically. See section 16. Technical data.
13.7 Overload
The motor is overloaded, i.e. the current consumption of the motor exceeds the limit value. For more information about the factory setting, see section 16. Technical data.
The motor is stopped and "Overload" is permanently on. See fig. 40.

Possible cause	Remedy
Pump is defective. | Pump must be serviced.
Sand or gravel in pump. | Pump must be serviced.
Wrong combination of pump and motor. | Replace pump or motor.

Restarting:
After 5 minutes (factory setting), or the period set by means of the Grundfos GO display "Automatic restarting", the motor will restart automatically.

13.8 Sensor alarm
The sensor alarm is activated in two incidents:
- If a connected sensor has detected that an alarm limit has been exceeded.
- If the sensor signal has fallen outside the measuring range set.
The motor is stopped and the "Sensor alarm" is permanently on. See fig. 41.

14. CU 300 with Grundfos GO
The remote control Grundfos GO is used for wireless infra-red communication with CU 300. During communication, there must be visual contact between CU 300 and the Grundfos GO. See fig. 42.

The Grundfos GO offers possibilities of setting and status displays for CU 300.
When the communication between the Grundfos GO and CU 300 has been established, the red indicator light (A) in the On/Off button will flash.
For general use of the Grundfos GO, see the operating instructions for this unit.
The menu structure for the Grundfos GO and CU 300 is divided into three main menus, each containing a number of displays.
- Status
- Settings
- Alarms and warnings
See 14.1 Menu overview on page 38.
14.1 Menu overview

<table>
<thead>
<tr>
<th>Status</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>External setpoint</td>
<td>15.1.1 External setpoint</td>
<td>40</td>
</tr>
<tr>
<td>Controlled from</td>
<td>15.1.2 Controlled from</td>
<td>40</td>
</tr>
<tr>
<td>Value, sensor 1</td>
<td>15.1.3 Value, sensor 1 and 2</td>
<td>40</td>
</tr>
<tr>
<td>Value, sensor 2</td>
<td>15.1.4 Value, sensor 1 and 2</td>
<td>40</td>
</tr>
<tr>
<td>Motor temperature</td>
<td>15.1.5 Motor temperature</td>
<td>40</td>
</tr>
<tr>
<td>Motor speed</td>
<td>15.1.6 Motor speed</td>
<td>40</td>
</tr>
<tr>
<td>Digital input</td>
<td>15.1.7 Digital input</td>
<td>40</td>
</tr>
<tr>
<td>Specific energy</td>
<td>15.1.8 Specific energy</td>
<td>40</td>
</tr>
<tr>
<td>Accumulated flow</td>
<td>15.1.9 Accumulated flow</td>
<td>40</td>
</tr>
<tr>
<td>Power consumption</td>
<td>15.1.10 Power consumption</td>
<td>40</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>15.1.11 Energy consumption</td>
<td>40</td>
</tr>
<tr>
<td>Operating hours</td>
<td>15.1.12 Operating hours</td>
<td>40</td>
</tr>
<tr>
<td>Number of starts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Settings</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
<td>15.2.1 Operating mode</td>
<td>40</td>
</tr>
<tr>
<td>Control mode</td>
<td>15.2.2 Control mode</td>
<td>40</td>
</tr>
<tr>
<td>Setpoint</td>
<td>15.2.3 Setpoint</td>
<td>41</td>
</tr>
<tr>
<td>Analog input 1</td>
<td>15.2.4 Analog inputs</td>
<td>41</td>
</tr>
<tr>
<td>Analog input 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limits, sensor 1</td>
<td>15.2.5 Limits, sensor 1 and 2</td>
<td>41</td>
</tr>
<tr>
<td>Min. stop value, sensor 1</td>
<td>15.2.6 Min. stop value, sensor 1 and 2</td>
<td>41</td>
</tr>
<tr>
<td>Max. stop value, sensor 1</td>
<td>15.2.7 Max. stop value, sensor 1 and 2</td>
<td>41</td>
</tr>
<tr>
<td>Limits, sensor 2</td>
<td>15.2.5 Limits, sensor 1 and 2</td>
<td>41</td>
</tr>
<tr>
<td>Min. stop value, sensor 2</td>
<td>15.2.6 Min. stop value, sensor 1 and 2</td>
<td>41</td>
</tr>
<tr>
<td>Max. stop value, sensor 2</td>
<td>15.2.7 Max. stop value, sensor 1 and 2</td>
<td>41</td>
</tr>
<tr>
<td>External setpoint</td>
<td>15.2.8 External setpoint</td>
<td>41</td>
</tr>
<tr>
<td>Warning temperature</td>
<td>15.2.9 Warning, temperature</td>
<td>42</td>
</tr>
<tr>
<td>Digital input 1</td>
<td>15.2.10 Digital input</td>
<td>42</td>
</tr>
<tr>
<td>Flow per pulse</td>
<td>15.2.11 Flow per pulse</td>
<td>42</td>
</tr>
<tr>
<td>Stop limit, accum. flow</td>
<td>15.2.12 Stop limit, accumulated flow</td>
<td>42</td>
</tr>
<tr>
<td>Sensor, accum. flow stop</td>
<td>15.2.13 Sensor, accumulated flow stop</td>
<td>42</td>
</tr>
<tr>
<td>Stop type, sensor 1</td>
<td>15.2.14 Stop type, sensor 1 and 2</td>
<td>42</td>
</tr>
<tr>
<td>Stop type, sensor 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic restarting</td>
<td>15.2.15 Automatic restarting</td>
<td>42</td>
</tr>
<tr>
<td>Double restarting time</td>
<td>15.2.16 Double restarting time</td>
<td>42</td>
</tr>
<tr>
<td>Start delay</td>
<td>15.2.17 Start delay</td>
<td>43</td>
</tr>
<tr>
<td>Dewatering</td>
<td>15.2.18 Dewatering</td>
<td>43</td>
</tr>
<tr>
<td>Dewatering max. on time</td>
<td>15.2.19 Dewatering, maximum "On" and "Off" time</td>
<td>43</td>
</tr>
<tr>
<td>Dewatering max. off time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continues on page 39.
Settings

<table>
<thead>
<tr>
<th>Settings</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry-running protection</td>
<td>15.2.20 Dry-running protection</td>
<td>43</td>
</tr>
<tr>
<td>Dry-running stop</td>
<td>15.2.21 Dry-running stop</td>
<td>43</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>15.2.22 Maximum speed</td>
<td>43</td>
</tr>
<tr>
<td>Buttons on product</td>
<td>15.2.23 Buttons on product</td>
<td>44</td>
</tr>
<tr>
<td>Number</td>
<td>15.2.24 Number</td>
<td>44</td>
</tr>
<tr>
<td>Store settings</td>
<td>15.2.25 Store settings</td>
<td>44</td>
</tr>
<tr>
<td>Recall settings</td>
<td>15.2.26 Recall settings</td>
<td>44</td>
</tr>
<tr>
<td>Undo</td>
<td>15.2.27 Undo</td>
<td>44</td>
</tr>
<tr>
<td>Unit configuration</td>
<td>15.2.28 Unit configuration</td>
<td>44</td>
</tr>
</tbody>
</table>

Alarms and warnings

<table>
<thead>
<tr>
<th>Alarms and warnings</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm log</td>
<td>15.3.1 Alarm and warning logs</td>
<td>45</td>
</tr>
<tr>
<td>Warning log</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. Description of functions

15.1 Status
The "Status" menu for CU 300 offers the possibility of reading operating parameters.

15.1.1 External setpoint
You can read the value of the external setpoint in this display.

15.1.2 Controlled from
This display shows the control source:
• CU 300
• external.

15.1.3 Value, sensor 1 and 2
You can read the values measured by sensor 1 and 2 in these displays.

15.1.4 Motor temperature
The actual temperature of the motor electronics stated in °C or °F.
Tolerance: ± 5 %.
Relation to other displays:
To select °F, choose this in display 15.2.28 Unit configuration.

15.1.5 Motor speed
The actual speed stated in min⁻¹ (rpm).
Tolerance: ± 1 %.

15.1.6 Digital input
You can read the value measured by the digital input in this display. For instance, the actual flow is shown if the digital input has been connected to a pulse flowmeter and is setup to monitor the flow.

15.1.7 Specific energy
You can read the specific energy in this display.

15.1.8 Accumulated flow
You can read the pumped water quantity in this display.

15.1.9 Power consumption
You can read the actual power consumption in this display.

15.1.10 Energy consumption
You can read the total energy consumption in this display.

15.1.11 Operating hours
The value of operating hours is accumulated from the pump's birth and it cannot be reset.
The value is stored in the motor electronics, and it is kept even if CU 300 is replaced.
The value is updated in the software every 2 minutes of continuous operation. The displayed value is updated every two hours.

15.1.12 Number of starts
The value of number of starts is accumulated from the pump's birth and it cannot be reset.
The value is stored in the motor electronics, and it is kept even if CU 300 is replaced.

15.2 Settings
The "Settings" menu for CU 300 offers the possibility of setting operating parameters.

15.2.1 Operating mode
Select one of the following operating modes:
• Max.
 Pump operation is set to maximum speed, irrespective of setpoint. The maximum speed is set in display 15.2.22 Maximum speed (default: 10,700 min⁻¹).
• Normal.
 Normal operating mode, i.e. pump operation is based on the setpoint set in display 15.2.3 Setpoint.
 Examples: Speed set in display 15.2.3 Setpoint or sensor control.
• Min.
 Pump operation is set to minimum speed, 3000 min⁻¹, irrespective of setpoint.
• Stop.
 The pump is stopped.

Factory setting
"Stop".

15.2.2 Control mode
The following settings are available:
• Open loop.
 The speed is set to normal operation based on the setpoint set in display 15.2.3 Setpoint (e.g. 10,700 min⁻¹) or controlled by means of a signal connected to analog input 2.
 See section 9. CU 300 connected to potentiometer.
• Closed loop.
 Controlling according to sensor 1 (type and unit).
 Example: Constant-pressure control.
 See section 6. CU 300 with constant-pressure control - 0 to 10 bar.

Relation to other displays:
The unit (min⁻¹) of display 15.2.3 Setpoint is changed according to the unit of the sensor installed.

Factory setting
"Open loop"
15.2.3 Setpoint
Setting range: 3000-10,700 min⁻¹ (100 min⁻¹ intervals).

Dry-running protection
If you use "Setpoint" to reduce the speed, the dry-running protection will apply only in the "maximum speed" range, i.e. maximum speed less than 1000 min⁻¹. See section 4.3.1 Function.

Relation to other displays
The setting in display 15.2.3 Setpoint is overridden by the "Max." and "Min." settings in display 15.2.1 Operating mode.

If you select "Closed loop" in display 15.2.2 Control mode, the setpoint is set within the setting range of the installed sensor.
Example: If the analog input 1 is connected to a pressure sensor using the unit metre (m) and the measuring range (0-60), you can set the setpoint between 0 and 55 m in display 15.2.3 Setpoint.

Factory setting
"10,700 min⁻¹"

15.2.4 Analog inputs
Make the following settings according to sensor type:
- Sensor output signal: "-" (not active), 0-20 mA, 4-20 mA, 0-10 V, 2-10 V.
- Setting range unit: m³/h, m, %, GPM, ft.

Setting range:
- Minimum value: 0-249 (0, 1, 2,249).
- Maximum value: 1-250 (1, 2,250).

Factory setting
Sensor output signal: "Not active"
Setting range unit: "m".

15.2.5 Limits, sensor 1 and 2
In these displays, you can set the warning and alarm limits for sensor 1 and 2.

15.2.6 Min. stop value, sensor 1 and 2
In these displays, you can set the minimum value at which the pump must stop for sensor 1 and 2.

15.2.7 Max. stop value, sensor 1 and 2
In these displays, you can set the maximum value at which the pump must stop for sensor 1 and 2.

15.2.8 External setpoint
Set the pump performance control by means of an external signal.
To be used in the following two situations:
- For installations including a potentiometer.
- In large SCADA systems.
 In SCADA systems, this function makes it possible to control pump performance via remote controlling (e.g. via a PC).

The following settings are available:
- SPP 1.
 Grundfos potentiometer.
 See section 2.1 Expansion possibilities.
- 4-20 mA.
- 0-20 mA.
- 2-10 V.
- 0-10 V.
- "Not active"
 No external setpoint setting made.

Description
By connecting a current or voltage signal to analog input 2, you can control the motor speed between the setpoint set in display 15.2.3 Setpoint and the lowest speed of 3000 min⁻¹.

If the setpoint is set to 10,700 min⁻¹ in display 15.2.3 Setpoint, the motor speed can be changed between 3000 and 10,700 min⁻¹.

The actual setpoint is calculated by CU 300 and shown in display 15.2.3 Setpoint.

If an SPP 1 potentiometer is connected, the internal voltage supply of CU 300 is used to generate the signal.

See section 9. CU 300 connected to potentiometer.

Relation to other displays
If you have set display 15.2.2 Control mode to "Closed loop" instead of "Open loop" (factory setting), the controlling is based on signals from analog input 1. Therefore, the unit in display 15.2.3 Setpoint is changed from min⁻¹ to the unit of sensor 1 (m³/h, m, %, GPM, ft).

Factory setting
"Not active".
15.2.9 Warning, temperature
Set the temperature warning limit of the motor.
Setting range: "." (not active), 2, 4, 6,85 °C.

Note
The maximum temperature depends on
the motor type.
Set the temperature warning limit between normal
operating temperature and maximum temperature.

Relation to other displays
You find the actual operating temperature in display
15.1.4 Motor temperature.
If the temperature warning limit is exceeded, the
alarm signal relay operates.

Advantage
Instead of a sudden stop without a warning, you get
the following:
• Information that the motor temperature is rising.
• The possibility of planning service of the
installation.

Usage
You can use this function e.g. if the pumped liquid
contains a relatively high level of ochre.

Factory setting
"Not active".

15.2.10 Digital input
Select one of the following functions:
• The digital sensor connected to the digital input
(flow measuring).
• The external on/off switch for the pump.
The following functions are available:
• "Not active".
• "Stop".
The pump is stopped when a switch connected to
terminals 12 and 13 is closed. No l/pulse to be
set. See section 15.2.10 Digital input.
• "Start".
The pump is started when a switch connected to
terminals 12 and 13 is closed. No l/pulse to be
set. See section 15.2.10 Digital input.
• "Flow".
If you have selected "Flow", the l/pulse value
must also be set.
Setting range: "." (not active), 0.1, 0.2, 0.3,....20,
21, 22,100 l/pulse.

Relation to other displays:
The selection of "Flow" in this display makes display
15.2.10 Digital input available, i.e. status of digital
input.

Factory setting
"Not active".

15.2.11 Flow per pulse
In this display the pumped volume per pulse is set.
Setting range: 0.0, 0.1, 0.2, 0.3,20, 21, 22,100
l/pulse.
For more information, see section 15.2.10 Digital
input.

Factory setting
"0.0 l/pulse"

15.2.12 Stop limit, accumulated flow
In this display, you can set a limit at a specific
amount of pumped water where the pump must stop.

Factory setting
"Disabled".

15.2.13 Sensor, accumulated flow stop
In this display, you can select the sensor for
monitoring the accumulated flow.

Factory setting
"Disabled".

15.2.14 Stop type, sensor 1 and 2
In these displays, you can set the stop type for
sensor 1 and 2. For further information, see
8.2.3 Start and stop limits.

Factory setting
"Disabled".

15.2.15 Automatic restarting
Set the automatic restart time from stop to restart
attempt.
The following settings are available:
• "Enabled"
• "Disabled"
• 0 to 254 minutes.

Factory setting
"5 minutes".

15.2.16 Double restarting time
The following settings are available:
• enabled
• disabled.
When you have selected "Enabled", the restart time
set will be doubled automatically for every 10 motor
stops caused by an alarm. The time is doubled up to
a stop time of 4 hours. After 10 hours of operation
without an alarm, the restart time is automatically set to:
• The time set in the "Time" field.
• 5 minutes (factory setting) if no setting was made
in the "Time" field.

Relation to other displays:
If you have selected "Double", the dewatering
function is disabled.
15.2.17 Start delay
Set a start delay.
This function is used in installations where several pumps are connected to the same pipeline and where it is required that the pumps do not start up at the same time.
The SQE pumps have a built-in soft starter, which takes the starting current into account.
Setting range: 0-60 s.

Factory setting
"0 s"

15.2.18 Dewatering
For more information about the dewatering function, see 4.5 Description of the dewatering function.
The following settings are available:
• enabled
• disabled.

Relation to other displays
You can set the pump on and off times in the displays 15.2.19 Dewatering, maximum "On" and "Off" time.

Factory setting
"Disabled".

15.2.19 Dewatering, maximum "On" and "Off" time
In these displays, you set the maximum "On" and "Off" time for the pump for the dewatering function.
For more information, see section 4.5 Description of the dewatering function.

Operating indication
The dry-running alarm indication on CU 300 is automatically disabled, when this display setting is made.
When you select the setting "Disabled", the dewatering function is disabled, and the dry-running alarm indication can be activated again.

Relation to other displays:
If you select "Double" in display 15.2.15 Automatic restarting, the dewatering function is disabled.

Factory setting
"Disabled"

15.2.20 Dry-running protection
The following settings are available:
• enabled
• disabled.
The setting in this display applies to both the dewatering function and the dry-running protection.
In certain installations, it may be necessary to disable the dry-running protection.
For further information, see section 4.3 Description of dry-running protection.

Factory setting
"Enabled".

15.2.21 Dry-running stop
The dry-running stop value (dry-running power limit) is factory-set.
The value depends on the actual motor.
The factory setting depends on the power rating of the motor. See section 16. Technical data.
When the dry-running protection or the dewatering function is to be enabled, the minimum value of the pump power input must be set in this display.
For further information, see section 4.5 Description of the dewatering function.
Setting range: 0-2500 W.

Relation to other displays
15.2.20 Dry-running protection must be set to "Enabled".
If you have enabled "Double" in display 15.2.16 Double restarting time, the dewatering function is disabled.
You can read the actual pump power input in display 15.1.9 Power consumption.

Factory setting

<table>
<thead>
<tr>
<th>Motor size</th>
<th>Dry-running stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 kW</td>
<td>300 W</td>
</tr>
<tr>
<td>0.7 kW (SQ/SQE 2-55)</td>
<td>550 W</td>
</tr>
<tr>
<td>1.15 kW</td>
<td>680 W</td>
</tr>
<tr>
<td>1.55 kW</td>
<td>800 W</td>
</tr>
<tr>
<td>1.85 kW</td>
<td>900 W</td>
</tr>
</tbody>
</table>

15.2.22 Maximum speed
Set the maximum speed.
Setting range: 3000 - 10,700 min⁻¹.

Factory setting
10,700 min⁻¹.
15.2.23 Buttons on product
In this display, you can disable the On/Off button on the control unit for protective reasons. You can set the On/Off button to:
• "Active"
• "Not active".

Factory setting
"Active".

15.2.24 Number
Allocate a number to CU 300 and the pump connected. CU 300 and the pump must have the same number.

When allocating a number, the power supply to other CU 300 units, if any, must be switched off.

Setting range: "Not active", 1, 2,199.
Once a number setting has been made, the factory setting (not active) is no longer available.
In connection with bus communication, you must allocate a number to CU 300 and the pump.
If CU 300 and the pump do not have the same number, the alarm "No contact" will be indicated.

Factory setting
"Not active".

15.2.25 Store settings
You can store the actual settings for later use in this display.

15.2.26 Recall settings
You can recall the last stored settings that the pump will then use in this display.

15.2.27 Undo
You can undo previously made settings in this display.

15.2.28 Unit configuration
You can select between SI and US units in this display. The setting can be made generally for all parameters or customised for each individual parameter.

Note
When allocating a number, the power supply to other CU 300 units, if any, must be switched off.
15.3 Alarms and warnings

15.3.1 Alarm and warning logs
These displays show the types of warnings and alarms that may have appeared.
Possible warnings and alarms are described in the following table:

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fault indication</td>
<td>No alarms are registered by CU 300.</td>
</tr>
<tr>
<td>No contact to pump</td>
<td>No communication between CU 300 and the pump.</td>
</tr>
<tr>
<td>Overvoltage</td>
<td>The supply voltage exceeds the limit value.</td>
</tr>
<tr>
<td>Undervoltage</td>
<td>The supply voltage is below the limit value.</td>
</tr>
<tr>
<td>Dry running</td>
<td>The dry-running protection of the pump has been activated.</td>
</tr>
<tr>
<td>Overtemperature</td>
<td>The motor temperature exceeds the limit value.</td>
</tr>
<tr>
<td>Overload</td>
<td>The current consumption of the motor exceeds the limit value.</td>
</tr>
<tr>
<td>Alarm, sensor 1</td>
<td>The sensor 1 signal has fallen outside the measuring range set. Note: The sensor number refers to the terminal connection input number.</td>
</tr>
<tr>
<td>Alarm, sensor 2</td>
<td>The sensor 2 signal has fallen outside the measuring range set. Note: The sensor number refers to the terminal connection input number.</td>
</tr>
<tr>
<td>Sensor 1 defective</td>
<td>The sensor signal of a 4-20 mA or 2-10 V sensor is below 2 mA or 1 V respectively.</td>
</tr>
<tr>
<td>Sensor 2 defective</td>
<td>The sensor signal of a 4-20 mA or 2-10 V sensor is below 2 mA or 1 V respectively.</td>
</tr>
<tr>
<td>Warning, sensor 1</td>
<td>The sensor 1 warning limit has been exceeded.</td>
</tr>
<tr>
<td>Warning, sensor 2</td>
<td>The sensor 2 warning limit has been exceeded.</td>
</tr>
<tr>
<td>Warning, temperature</td>
<td>The temperature warning limit has been exceeded.</td>
</tr>
</tbody>
</table>

Relation to other displays:
The setting in display 15.2.3 Setpoint is overridden by the "Max." and "Min." settings in display 15.2.1 Operating mode.
If you select "Closed loop" in display 15.2.2 Control mode, the setpoint is set within the setting range of the installed sensor.
Example: If the analog input 1 is connected to a pressure sensor using the unit metre (m) and the measuring range (0-60), you can set the setpoint between 0 and 55 m in display 15.2.3 Setpoint.
16. Technical data

Supply voltage
1 x 100-240 V - 10 %/+ 6 %, 50/60 Hz, PE.

Power consumption
5 W.

Backup fuse
Maximum 16 A.

Current consumption
Maximum 130 mA.

Mains borne signalling
Frequency shift keying (FSK).
(132.45 kHz, ± 0.6 kHz).

Enclosure class
IP55.

Maximum difference between CU 300 and pump
200 metres.

Ambient temperature
During operation: -30 to 50 °C
(must not be exposed to direct sunlight).
During storage: -30 to 60 °C.

Weight
2.0 kg.

Relative air humidity
Maximum 95 %.

Materials
The CU 300 box is made of black PPO.

EMC (Electromagnetic compatibility)
See Declaration of conformity on page 48.

Dimensional sketch

![Fig. 43]

Inputs/output

<table>
<thead>
<tr>
<th>Alarm relay</th>
<th>Potential-free changeover contact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum contact load: 250 VAC.</td>
<td></td>
</tr>
<tr>
<td>Maximum current: 1 A.</td>
<td></td>
</tr>
<tr>
<td>Minimum contact load: 5 VDC, 10 mA.</td>
<td></td>
</tr>
<tr>
<td>Specifications: 250 VAC, 8 A, AC1.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary relay</th>
<th>Potential-free changeover contact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum contact load: Safety extra-low voltage to be used only.</td>
<td></td>
</tr>
<tr>
<td>Maximum current: 1 A.</td>
<td></td>
</tr>
<tr>
<td>Minimum contact load: 5 VDC, 10 mA.</td>
<td></td>
</tr>
<tr>
<td>Specifications: 250 VAC, 8 A, AC1.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digital input</th>
<th>External potential-free contact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic "0": U_{in} > 3.2 V.</td>
<td></td>
</tr>
<tr>
<td>Logic "1": U_{in} < 0.9 V.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor 1</th>
<th>Voltage signal: 0-10 VDC/2-10 VDC, R_i = 11 kΩ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance: at maximum voltage signal.</td>
<td></td>
</tr>
<tr>
<td>Screened cable is recommended.</td>
<td></td>
</tr>
<tr>
<td>Maximum cable length: 500 m.</td>
<td></td>
</tr>
<tr>
<td>Current signal: DC 0-20 mA/4-20 mA, R_i = 500 Ω.</td>
<td></td>
</tr>
<tr>
<td>Tolerance: ± 3 % at maximum current signal.</td>
<td></td>
</tr>
<tr>
<td>Screened cable is recommended.</td>
<td></td>
</tr>
<tr>
<td>Maximum cable length: 500 m.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor 2</th>
<th>Potentiometer SPP 1: 0-24 VDC, 10 kΩ (via internal voltage supply).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screened cable is recommended.</td>
<td></td>
</tr>
<tr>
<td>Maximum cable length: 100 m.</td>
<td></td>
</tr>
<tr>
<td>Voltage signal: 0-10 VDC/2-10 VDC, R_i = 11 kΩ.</td>
<td></td>
</tr>
<tr>
<td>Tolerance: ± 3 % at maximum voltage signal.</td>
<td></td>
</tr>
<tr>
<td>Screened cable is recommended.</td>
<td></td>
</tr>
<tr>
<td>Maximum cable length: 500 m.</td>
<td></td>
</tr>
<tr>
<td>Current signal: DC 0-20 mA/4-20 mA, R_i = 500 Ω.</td>
<td></td>
</tr>
<tr>
<td>Tolerance: ± 3 % at maximum current signal.</td>
<td></td>
</tr>
<tr>
<td>Screened cable is recommended.</td>
<td></td>
</tr>
<tr>
<td>Maximum cable length: 500 m.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RS-485</th>
<th>Grundfos fieldbus, GENIbus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 - 1 mm² screened 2-core cable.</td>
<td></td>
</tr>
<tr>
<td>Maximum cable length: 1200 m.</td>
<td></td>
</tr>
</tbody>
</table>
Factory settings

<table>
<thead>
<tr>
<th>Alarm</th>
<th>200-240 V motors</th>
<th>100-115 V motors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7 kW</td>
<td>1.15 kW</td>
</tr>
<tr>
<td>Overvoltage(^1)</td>
<td>320 VAC</td>
<td>320 VAC</td>
</tr>
<tr>
<td>Undervoltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed reduction:</td>
<td>Speed reduction:</td>
<td>Speed reduction:</td>
</tr>
<tr>
<td>190 V</td>
<td>190 V</td>
<td>210 V</td>
</tr>
<tr>
<td>Stop limit: 150 V</td>
<td>Stop limit: 150 V</td>
<td>Stop limit: 150 V</td>
</tr>
<tr>
<td>Dry-running stop</td>
<td>300 W</td>
<td>680 W</td>
</tr>
<tr>
<td>Dry-running protection</td>
<td>"Active" (Grundfos GO setting). See section 15.2.20 Dry-running protection)</td>
<td></td>
</tr>
<tr>
<td>Speed reduction</td>
<td>In connection with undervoltage or overload</td>
<td></td>
</tr>
<tr>
<td>Electronics temperature</td>
<td>Stop limit: 65 °C</td>
<td>Stop limit: 75 °C</td>
</tr>
<tr>
<td>Restart: 55 °C</td>
<td>Restart: 65 °C</td>
<td>Restart: 75 °C</td>
</tr>
<tr>
<td>Overload</td>
<td>5.2 A</td>
<td>8.4 A</td>
</tr>
<tr>
<td>Sensor alarm</td>
<td>"No sensor used" (Grundfos GO setting). See section 15.2.4 Analog inputs)</td>
<td></td>
</tr>
</tbody>
</table>

1) 200-240 V motors: Operation is guaranteed up to 280 VAC. 100-115 V motors: Operation is guaranteed up to 150 VAC. In order to avoid unnecessary stops, the overvoltage stop limit is as stated.

2) Applies only to SQ/SQE 2-55.

Accuracy of Grundfos GO readings

<table>
<thead>
<tr>
<th>Display</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>External setpoint</td>
<td>± 5 %</td>
</tr>
<tr>
<td>Motor temperature</td>
<td>± 5 %</td>
</tr>
<tr>
<td>Motor speed</td>
<td>± 1 %</td>
</tr>
<tr>
<td>Power input</td>
<td>± 5 %</td>
</tr>
<tr>
<td>Power consumption</td>
<td>± 5 %</td>
</tr>
<tr>
<td>Energy consumption</td>
<td>± 5 %</td>
</tr>
</tbody>
</table>

Sensors
The sensor signal accuracy depends on the sensor type. See the sensor specifications in question.

17. Disposal

This product or parts of it must be disposed of in an environmentally sound way:
1. Use the public or private waste collection service.
2. If this is not possible, contact the nearest Grundfos company or service workshop.

Subject to alterations.
Declaration of conformity

GB: EC/EU declaration of conformity

We, Grundfos, declare under our sole responsibility that the product CU 300, to which the declaration below relates, is in conformity with the Council Directives listed below on the approximation of the laws of the EC/EU member states.

Note: There are two sets of Council Directives and standards listed below. One set applies until and including 19th April 2016. The other set applies from 20th April 2016 and onwards.

These Directives and standards apply until and including 19th April 2016:
 Standards used:
 EN 60335-1:2012
 Standards used:

These Directives and standards apply from 20th April 2016 and onwards:
 Standards used:
 EN 60335-1:2012
 Standards used:

This EC/EU declaration of conformity is only valid when published as part of the Grundfos installation and operating instructions (publication number 96427972 0915).

Bjerringbro, 15th June 2015

Svend Aage Kaae
Director
Grundfos Holding A/S
Poul Due Jensens Vej 7
8850 Bjerringbro, Denmark

Person authorised to compile the technical file and empowered to sign the EC declaration of conformity.