

Geotech Environmental Control Module - Water Table Depression Pump

Installation and Operation Manual

Table of Contents

Quick Start Instructions	3
Abbreviations Used	4
Section 1: System Description	5
Function and Theory	5
How the GECM Works	7
Inputs	8
Outputs	8
Additional Inputs and Outputs	9
Section 2: System Installation	.10
Panel Installation	.10
Wire Pump	.12
Wire Probe	.12
Wire Flow Meter and Monitor	.12
Wire Auxiliary Outputs	.13
Section 3: System Operation	.14
System Pre-Check Procedures	.14
Panel Startup	.14
Panel Controls	.15
Faults and Alarms	.15
Dashboard	.15
SiteView Access	.16
Motor Starter	.16
VFD	.16
Float Probes	.16
Pressure Transducers	.18
Conductivity Probe	.19
Flow Monitor (optional)	.19
Auxiliary Input	.19
Auxiliary Output	.19
Section 4: System Maintenance	.20
Vacuum Enclosure	.20
Clean Probes	.20
Pump Winterization	.20
Probe Winterization	.20
Section 5: System Troubleshooting	.21
	.21
Service Location	.21
Basic Troubleshooting Procedures	.21
Pump Troubleshooting	.22
Clearing Faults	. 22
Mechanical	.23
Flootrical	.23
Site Doguiromonte	.23
Sile Requirements	.23
Section 9: Darts and Accessories	.25
Appendix A: Glossory	.20
Appendix A. Glossaly	.20
Appendix D - Submersible Water Fullips Decontamination Procedures	.30
Decontamination Solutions to Avoid	
Disposal of Decontamination Solutions and Westewater	. JJ 2/
Recommended Supplies for Decontamination of Personnel Clothing and Equipment	.04 3⊿
The Warranty	37
···· , ····· , ···· ,	

Documentation Conventions

This uses the following conventions to present information:

An exclamation point icon indicates a **WARNING** of a situation or condition that could lead to personal injury or death. You should not proceed until you read and thoroughly understand the **WARNING** message.

WARNING

A raised hand icon indicates **CAUTION** information that relates to a situation or condition that could lead to equipment malfunction or damage. You should not proceed until you read and thoroughly understand the **CAUTION** message.

A note icon indicates **NOTE** information. Notes provide additional or supplementary information about an activity or concept.

NOTE

This Geotech product cannot be made dangerous or unsafe as a result of failure due to EMC interference.

Do not operate this equipment if it has visible signs of significant physical damage other than normal wear and tear.

Notice for consumers in Europe:

This symbol indicates that this product is to be collected separately.

The following applies only to users in European countries:

- This product is designated for separate collection at an appropriate collection point. Do not dispose of it as household waste.
- For more information, contact the seller or the local authorities in charge of waste management.

Quick Start Instructions

Read this section even if you do not read anything else.

The large Ziplock bag shipped with your GEOTECH ENVIRONMENTAL CONTROL MODULE (GECM) control panel contains installation instructions. Familiarity with the information in this Ziplock bag is essential for safe and trouble-free operation of the GECM control panel.

The GECM installation instructions contain the following sheets:

- A Field Wiring Diagram that shows basic wiring of GECM and probes.
- An Optional Feature(s) Wiring Diagram that shows how to wire analog sensor(s) to the GECM and other specialized devices.
- A logic statement that defines the controller's program.
- A QR code that provides the login credentials for the dashboard interface.

We highly recommend that all users read this entire Installation and Operation manual. We also recognize that some experienced technicians may desire a quick start summary of essential information. Please proceed as follows:

- 1. Mount the GECM panel(s) and carry out basic wiring according to the Field Wiring Diagram.
- 2. Carry out additional site-specific wiring according to the recommendations and examples provided in the Optional Feature(s) Wiring Diagram.
- 3. Connect to your GECM's dashboard using a Wi-Fi enabled device.

Observe all Warning and Cautions included in this GECM manual.

Abbreviations Used

- GECM = Geotech Environmental Control Module
- WTDP = Water Table Depression Pump
- VFD = Variable Frequency Drive
- L.O. = Low Override
- H.O. = High Override
- HOA Switch = Hand-Off-Auto Switch
- AGS/BGS = Above Ground Storage / Below Ground Storage
- Xfer Pump = Transfer Pump
- N/C = Normally Closed
- N/O = Normally Open

Section 1: System Description

Function and Theory

The GEOTECH ENVIRONMENTAL CONTROL MODULE Water Table Depression Pump Control Panel is a pump controller designed for use at groundwater remediation sites. The controller is housed within a weather-proof NEMA 4 (IP 66) enclosure. It incorporates circuitry to receive sensor inputs from density actuated Water Table Depression Pump (WTDP) probes, Modbus 485, and analog (4-20mA and/or 0-10 Volts) intrinsically safe inputs available for extension into hazardous locations.

The GECM incorporates a self-test feature that continuously monitors the Pump Status (on or off), panel temperature, and probe integrity whenever the GECM is in operation. An additional self-test routine that runs at panel startup, checks internal program and data memory, serial communications, and the integrity of all panel indicators on the GECM.

The standard GECM is equipped with terminals that allow the panel to interface with a variety of sensors, HOA switch(es), and external interlock devices. A dry contact is provided to the user as a means to shut down the entire system. An auxiliary output toggles the state of a form C relay when any system fault is present.

The GECM Water Table Depression Pump Control Panel can be designed to run up to three electric submersible pumps.

	1
-	I

Larger motors require larger motor starter. Variable Frequency Drives are a commonly used option for increased efficiency and optimal control.

Geotech offers an optional web portal (SiteView) to provide graphical representations of the GECM panel as it operates on site. Built in features of this web interface allow the user to generate historical reports, view graphs, and monitor near real-time remediation systems status from a remote location. Users can also configure alerts to be sent via e-mail or text messages. SiteView is available for an annual cost when the telemetry package is purchased.

User Interfaces

Physical **19**

The panel is equipped with HOA switch(es) and indicator lights that show the status of the pump. Refer to System Operation for details of panel operation.

Dashboard

The dashboard provides an overview of the system status and detailed information on alarms and faults. In addition, the dashboard allows the user to monitor, control, and configure the system while in close proximity to the GECM. The dashboard can be accessed through a local Wi-Fi connection using any web browser. The necessary Wi-Fi network credentials are located inside the control cabinet. QR codes are provided for ease of access.

SiteView - Remote Monitoring and Control

A modem and associated hardware/software included with the telemetry option allow the user to communicate with the GECM panel remotely via the Internet using a web browser.

Basic features of SiteView include:

- 1. A summary of near real-time site condition information.
- 2. History graphs of user selected parameters within a user defined timeframe.
- 3. Time-stamped telemetry data downloads of user selected parameters within a user defined timeframe.
- 4. User configurable text messages and email alerts.

How the GECM Works

The GECM uses highly flexible electronics to provide a wide variety of capabilities that range from basic to sophisticated pump control. This built-in versatility allows the GECM to be configured per site to match the unique requirements of any remediation application.

Basic Pump Control

Figure 1-1 shows a simple water pumping system in which a GECM panel controls the ON/OFF cycling of a pump in response to inputs from a standard Geotech Water Table Depression Pump (WTDP) probe (Figure 3-1). During normal operation, the pump starts when the water level in the well lifts the High/Low Float to the High Switch on the probe. The pump continues to run until the water level falls and drops the High/Low Float to the Low Switch. If the Low Switch fails to shut off the pump, the water level will continue to fall until the Low Override Float falls and disables the pump control circuit. This Low Override feature prevents the pump from running dry or pumping LNAPL, if present.

Inputs

Standard Inputs

Tank full probe Auxiliary input (Used to halt entire system) HOA switch(es)

Required Inputs (Varies based on Hardware Purchased)

Float probe or pressure transducer for well level

Optional Inputs

- Float probe for tank level
- Pressure transducer for tank level
- Well conductivity probe
- Flow rate and flow totalizer
- VFD system status (RS-485)
- Intrinsically safe RS-485 inputs
- Intrinsically safe 0-10 VDC analog inputs
- Intrinsically safe 4-20 mA analog inputs

Outputs

Indicator Lights

- Green light (illuminates when the pumps are running)
- Yellow light (illuminates when an alarm is active)
- Red light (illuminates when a fault has occurred)

Pump Control Signal

The pump(s) will be energized by either a motor-starter or a VFD. Pumps up to 75 HP are supported.

Auxiliary Output

A Form C dry contact relay toggles upon the detection of a fault. The relay remains toggled even after the fault condition is resolved because faults are designed to latch.

Additional Inputs and Outputs

In most applications, your GECM will be integrated into a remediation system that includes additional equipment components. These components (holding tanks, soil vapor extractors, hydrocarbon pumps, xfer pumps, oil/water separators, air stripper blowers, sensors, etc.) often must be interfaced to the control panel to optimize system performance and to prevent permit-excursions in the event of a component failure. Figure 1-2 shows another simple remediation system in which a submersible pump supplies water to an AGS tank. Again, the ON/OFF cycling of the pump is controlled by the status of the level probe. Use of such external interlock devices (High level shutoff switches, pressure switches, etc.) can be incorporated into the control logic.

Figure 1-2

Section 2: System Installation

The GEOTECH ENVIRONMENTAL CONTROL MODULE Water Table Depression Pump Controller must be deployed in a nonhazardous location and all conduit runs from the well head to the panel must conform to the National Electrical Code (NEC)

Before deploying the GECM

- 1. Is the electrical service at the site properly sized for this panel and does it conform to NEC and local codes?
- 2. Are the electrical characteristics of your pump(s) compatible with those of the panel?

Inspection

Inspect all equipment upon arrival. Check the contents of the packing crate against the itemized order list. If any items are missing or damaged, make note of this on the shipping papers and immediately notify Geotech Environmental Equipment, Inc. at +1(800) 833-7958 OR (303) 320-4764.

Panel Installation

Mount Panel

The GECM enclosure is supplied with mounting tabs that are attached to each corner. Separate instructions are included with the mounting tab hardware packaging. Ensure that the support framework is sufficiently robust to bear the control panel's weight and is firmly anchored. In case the panel is located in an exposed area, take into account the effects of lateral wind force, sunlight exposure, as well as protection from rain and snow.

Do not use nails to attach the panel, as a misdirected hammer blow could damage the enclosure.

All wiring must be carried out by a qualified electrician and be in accordance with state and local codes. See the following sections for panel grounding procedures.

Install Chassis Ground

Before beginning panel hookup procedures, run a wire from the panel chassis ground lug to a good earth ground such as the circuit breaker panel enclosure. The ground lug is located on the chassis behind the panel dead front (See the GECM wiring diagram included with your system).

Before installing wires, or touching exposed portions of the panel circuit board, safely discharge any static electricity from your body by touching or otherwise grounding yourself to the panel chassis.

To maintain the NEMA 4 weatherproof characteristics of your panel after wiring has been completed, seal all wiring access ports with weatherproof conduit tubes.

Wire Incoming Power (AC)

In lightning prone areas, have your electrician install a power line lightning arrestor. Contact your power company for further information.

Run power wires through the port at the bottom of the enclosure and attach to the terminal strip on the chassis. In 230VAC and 460VAC systems, attach the power leads to terminals L1 and L2. In 115VAC systems, wire power leads to the "HOT" and "NEUTRAL" terminals. Attach the ground wire to the grounding lug next to the terminal strip. Check tightness of terminal screws.

Do not run power wires within 2 inches of low voltage control wires or terminals.

Wire Incoming Power (Solar)

Refer to the wiring diagram provided with your system for attachment details when wiring your GECM with solar power. The components should be connected in the following order:

- 1. Jumper the 12V batteries to each other.
- 2. Wire the batteries to the battery charger charging terminals. Ensure battery voltage displays on charger.
- Connect the battery charger to the DC disconnect for battery charging (ensure off).
- 4. Wire the DC disconnect for battery charging to the solar panel, which will charge the batteries.
- 5. Turn on the DC disconnect for battery charging and verify batteries are charging on battery charger.
- 6. Run wires through the bottom of the GECM enclosure to wire the GECM to the VFD.
- 7. Run wires from the batteries through the bottom of the GECM enclosure and connect the batteries to the GECM.
- 8. Turn the PLC power switch to ON (switch behind touchscreen on PLC).
- 9. Wire the VFD to the DC disconnect for the VFD (ensure off).
- 10. Connect the DC disconnect for the VFD to the 8-panel solar string.
- 11. Turn on the DC disconnect for the VFD.
- 12. Turn the VFD switch on the front of the VFD to the ON position.

Wire Pump

With Motor Starter

Run the pump power wires through a port at the bottom of the enclosure. Attach the pump leads to terminals identified in the wiring diagram. Attach the ground wire to the chassis grounding lug next to the terminal block. Check tightness of terminal screws. See wiring diagram.

Refer to your water pump manual and heed all relevant Warnings and Cautions.

With VFD

Run the pump power wires to the terminal strips on the VFD as shown on the wiring diagram provided with your system.

Wire Probe

The GECM Water Table Depression Pump Control Panel is designed for use with a standard density actuated WTDP probe (Figure 3-1), or a pressure transducer. See respective subsections for wiring.

WTDP Float Probe

Run the probe cable through an access port on the side of the enclosure and attach its leads to terminal strips as shown on the wiring diagram provided with your system. The wiring of the WTDP probe switches is shown in Figure 3-1.

Pressure Transducer

During initial installation, the pressure transducer must be calibrated on the dashboard or SiteView. Follow the wiring diagram provided with your system to attach the transducer leads to the appropriate terminal strips.

Position the pressure transducer at or above the pump intake to avoid unintentionally running the pump in dry conditions.

Conductivity Probe

If your GECM system is to include a conductivity probe, follow the wiring diagram included with your system to attach the conductivity probe leads to their proper terminals. Position the conductivity probe at or above the pump intake to avoid unintentionally running the pump in dry conditions.

Wire Flow Meter and Monitor

Wire the flow meter and flow monitor in accordance with the wiring diagram provided with your system.

Wire Auxiliary Outputs

The GECM features Normally Open and Normally Closed Form C relay outputs that can be used to trigger a wide variety of external devices (e.g., relays, visual indicators, buzzers, and security system alarms).

Section 3: System Operation

System Pre-Check Procedures

Before deploying the pump and probe in the well, carry out the following pre-check procedures to familiarize yourself with the controls and confirm correct operation. You will need a bucket of water approximately 12" (29 cm) deep for probe test procedures.

- 1. Refer to the wiring diagrams and check all wiring connections to the panel.
- 2. With the HOA switch in the OFF position, switch the main power breaker or power switch ON (user supplied).
- 3. Briefly turn the HOA switch to HAND. The pump should start.

	Þ	1
-		
5		
-		

Do not run the pump dry for more than a few seconds.

4. Return the HOA switch to OFF and completely submerge the probe in the bucket of water.

			Þ
Ξ	_		Ξ
Ξ			Ξl
-	_	_	- 1

When using a transducer, ensure that the hysteretic set points are within achievable values for the bucket depth.

- 5. Turn the HOA switch to AUTO. The pump should start.
- 6. Lift the probe out of the bucket. Ensure the pump stops.
- 7. Turn the main power breaker or power switch off.

Once the above pre-check procedures have been completed, the GECM control panel is ready for operation. Deploy the pump and probe at the desired level in the well and carry out the startup procedures listed below.

Γ.	٦	
Ē		
ΙΞ		
=	<u> </u>	

The pump intake should be positioned at least 5' (1.5 m) below the level of drawdown. This will minimize intake of contaminated water. To prevent false OVERRIDE signals, suspend the probe at least 3' (1 m) above the pump intake.

Panel Startup

- 1. With the HOA switch in the OFF position, turn on the main power.
- After the panel has gone through its self-test procedure, turn the HOA switch to AUTO: The pump should start and begin cycling on and off as the water level rises and falls in the well.

3. With the water pump running on AUTO, reduce the rate cycling to a minimum by adjusting the pump gate valve.

Refer to the specifications provided with your pump and confirm that the volume of water passing through it is sufficient for adequate cooling.

Panel Controls

Each well's pump is controlled with a HOA switch. The HOA switch has three states:

- HAND: A momentary switch that activates the pump, regardless of signal inputs.
- OFF: The pump will not run, regardless of signal inputs.
- AUTO: Activates and deactivates the pump in accordance with sensor inputs and system logic. Logic for AUTO operation is detailed below.

<u>AUTO</u>

In the AUTO position, ON/OFF switching of the pump is controlled by sensor inputs from the level sensing probe. The green well light is illuminated when the well pump is running. For GECMs with float probes, the pump starts when the probe's High/Low Float is in the High position. The pump will continue to run until the float falls to the Low position. For GECMs with pressure transducers, the pump starts when the "Pump On" set point is reached. The pump will continue to run until the "Pump Off" set point is reached. The pump will continue to run until the "Pump Off" set point is reached. The pump will run autonomously unless an alarm or fault condition prevents pumping. If difficulties are encountered during or after startup, refer to the troubleshooting procedures in Section 5: of this manual.

Faults and Alarms

Alarms are temporary conditions which prevent the affected pump from operating. Alarms illuminate the respective pump's yellow light. When the condition alleviates, the system will resume normal operation.

Faults are latching conditions that require the user to inspect and resolve the problem. The user must reset the affected HOA switch before it will resume normal operation. Faults illuminate the affected pump's red light. To reset a fault for a pump, the respective HOA switch must be set to the "OFF" position.

Dashboard

The dashboard interface may be accessed on any web browser from your Wi-Fi enabled device using the login credentials provided on the QR codes located inside the control panel cover. The dashboard gives users detailed information on alarms and faults. Additionally, the dashboard displays the status of the overall system and the cumulative operating time for each pump on a digital hour (Hobbs) meter. If a flow monitor is installed, total and grand total counters track the total volume of liquids pumped. These counters can be reset concurrently, or the total counter can be reset independently (either manually or automatically) at daily or weekly intervals.

SiteView Access

Remote monitoring and control may be accessed via any web browser by logging onto SiteView. You will receive an email with instructions to access your online account portal. If you forget your login credentials you may click "*forgot password*" from the main login page. Geotech Sales and Customer service cannot access your account credentials. You must reset your account through the website.

Motor Starter

All AC powered GECMs have the option of an internal motor starter to control the pumps. The motor starter provides overcurrent protection for the pumps.

VFD

Solar (DC powered) GECMs require the use of a VFD as an inverter. AC powered GECMs also have the option to utilize a VFD. Like the motor starter, the VFD provides overcurrent protection. However, the VFD additionally provides speed control for the pumps. Speed control is accomplished via a knob located on the front of the VFD, the dashboard, or as a percentage of maximum speed on the SiteView website.

Float Probes

Tank Full

Each GECM comes ready to receive input from a tank full probe. This probe has a float switch which latches a fault when the fluid level in the tank causes the float to rise to its high position.

Level Probes

Each well and tank may be equipped with a float probe. The table below demonstrates how the GECM responds to float probe inputs from well level and tank level probes.

	Level Probe Signal			Pump R	esponse	
	Well Lvl Hi	Well Lvl Lo	Tank Lvl Hi	Tank Lvl Lo	Well Pump	Xfer Pump
1	True	False	True	False	Stop Pump	Start Pump
2	True	False	False	True	Start Pump	Stop Pump
3	True	False	False	False	Start Pump	No Change
4	False	True	True	False	Stop Pump	Start Pump
5	False	True	False	True	Stop Pump	Stop Pump
6	False	True	False	False	Stop Pump	No Change
7	False	False	True	False	Stop Pump	Start Pump
8	False	False	False	True	No Change	Stop Pump
9	False	False	False	False	No Change	No Change

Any level probe signal configuration not listed in the table results in a fault.

Float probes have either a L.O. or H.O. float switch which will latch a fault when activated. A WTDP float probe (Figure 3-1), specifically uses a L.O. float switch which shuts off the pump in order to avoid dry running and subsequently damaging the pump. If a well is instrumented with a WTDP float probe, the pump will begin when the probe is in the High state and will continue to pump until it is in the Low state.

Figure 3-1: Standard Density Actuated WTDP Probe

For custom level settings, an extended High to Low split probe is available (Figure 3-2). This allows the user to manually adjust the hysteretic control by positioning the High Switch as required.

Figure 3-2: Extended High to Low WTDP Probe

Pressure Transducers

In GECMs equipped with transducers, the ON/OFF switching of the pump is controlled by user defined hysteretic set points. The set points can be managed using the dashboard and/or SiteView.

Conductivity Probe

WTDP systems configured with a conductivity probe monitor the presence of water to prevent running the pump in dry well conditions. Conductivity probes have two states:

- Wet: Fluid is in contact with the probe No change to pumping status
- Dry: Fluid is not in contact with the probe Stop pumping and latch fault

Flow Monitor (optional)

The flow monitor in conjunction with a flow meter, measures and displays the flow rate and total volume of liquids pumped. The user must define the desired units for the flow rate and volume on the flow monitor. The dashboard flow units must be configured separately to match the units of the flow monitor.

The flow monitor also provides a feature that stops pump operations based on volume pumped. The user can set a target volume to be pumped and enable or disable the feature on the dashboard. If this feature is enabled, the pump will stop pumping when the target volume is reached, or communication is lost with the flow monitor. In the case of target volume reached, normal operation will resume when the feature is disabled, or a new target volume is set. This feature is not settable on SiteView, because the tank level should be checked in person before setting or resetting the target volume. If the GECM loses communication with the flow monitor while the volume tracking feature is disabled the dashboard will indicate a lost signal, but the system will continue operating as normal. This does not alarm the system.

Flow detection can be enabled/disabled from the dashboard or SiteView website. The user must enter a detection time and minimum threshold for flow rate. If the GECM commands the pump to run and the flow rate fails to meet or exceed the user-specified flow threshold, an internal timer will initiate a countdown starting at the user-specified detection time. If the countdown timer reaches zero before the flow rate meets or exceeds the flow threshold, a fault will latch. Lost communication with the flow monitor while flow detection is enabled will also result in a latched fault. When flow detection is disabled, the dashboard will indicate a lost signal, but the system will continue operating as normal.

Auxiliary Input

A dry contact is provided to the user as a means to shut down the entire system. When the dry contact is opened, the entire system will latch a fault, red lights will illuminate, and SiteView and the dashboard will show Aux-In fault. In order to resume operation, the dry contact must be returned to closed, and all HOA switches need to be reset by placing them in the "OFF" position.

	9
	Ξ1
Ξ	Ξ1
=	=1

NOTE: The Aux-In dry contact can be closed with a jumper wire in the event the user chooses to not make use of the auxiliary-input.

Auxiliary Output

A form C dry contact relay assembly is incorporated into the GECM panel. If any latched faults exist, the dry contact will change state sending an output signal (normally closed to open, or normally open to closed) to alert the user of the presence of a fault.

Section 4: System Maintenance

The GECM is designed for trouble free operation with minimal maintenance required. The following simple maintenance tasks should be carried out at the specified intervals.

Vacuum Enclosure

At yearly intervals, the insides of the enclosure should be vacuumed to remove accumulated dust.

Clean Probes

It is essential that the probe shafts and floats be cleaned on a regular basis. Use detergent, warm water and a soft brush. The required frequency of cleanings is highly site specific and must be determined by the user.

Failure to clean the probe will result in fouling that could cause a system malfunction.

Pump Winterization

	AC	Solar (DC)	
1.	Place HOA switch in OFF position		
2.	Remove pur	mp from well	
3.	Purge pump with fresh water by placing HOA switch in HAND position		
4.	Set PLC power switch to OFF (switch behind touchscreen)		
5.	Not applicable Turn off DC disconnect for batte		
		charging	
6.	Not applicable	Disconnect batteries	
7.	Not applicable Turn Off DC disconnect for VFD		
8.	Store pump in dry storage area		
9.	Not applicable	Store batteries in dry storage area	

Probe Winterization

- 1. Remove level probe from well.
- 2. Rinse with fresh water.
- 3. Store level probe in dry storage area.

Section 5: System Troubleshooting

Do not attempt any troubleshooting procedures other than those listed in this section.

Getting Help

There are no field replaceable components inside the GECM enclosure. If the troubleshooting procedures in this chapter indicate a component failure, call Geotech Environmental Equipment, Inc. after documenting the problem as outlined below:

Read the entire manual and become thoroughly familiar with all system components and troubleshooting procedures.

Prepare a written list of all problems encountered while operating the equipment.

Service Location

Geotech Service personnel are trained on all aspects of Geotech equipment and are dedicated to helping you maximize the efficiency and cost effectiveness of your GECM Control Panel. For technical support of Geotech products, contact Geotech as below:

Geotech Environmental Equipment, Inc. 2650 East 40th Avenue Denver, CO 80205 800-833-7958 OR: 303-320-4764 www.geotechenv.com

Basic Troubleshooting Procedures

The GECM is equipped with self-diagnostic features and can be ordered with optional telemetry capabilities. These features make the GECM significantly easier to troubleshoot than conventional control panels. Whenever the GECM is in operation, the PLC monitors the function of all critical system components. When an operational fault is detected, the user is alerted by one or more of the panel's indicator lights, the dashboard, and/or SiteView.

Using a voltmeter to verify power is connected to the GECM is the most common troubleshooting procedure. If unfamiliar with using a voltmeter to verify power is connected, consult with an electrician.

Pump Troubleshooting

To determine if the pump is faulty, you can "bump" the pump motor by momentarily turning the HOA switch to the HAND position. If the pump does not run, the pump is likely faulty.

_	<u></u>
Ξ	\equiv
Ξ	
_	

Do not run the pump dry for more than a few seconds.

Clearing Faults

When a fault occurs, a system reset is required. A reset can be accomplished by placing the HOA switch of the affected well in the "OFF" position for a minimum of two seconds.

A fault may be caused by any of the following:

- No signal or signal lost
 - One or more disconnected probe wires
 - Probe wired incorrectly
 - Damaged probe or wire
 - Power or connectivity issue with flow monitor when low flow detection feature is enabled.
- H.O. or L.O. are triggered
- Float out-of-order fault

0

- \circ The H.O. signal and the Low signal are both true at the same time, or
 - The L.O. signal and the High signal are both true at the same time Damaged or stuck probe
- Transducer signal out of range
- Tank full signal active
- Dry well
 - Conductivity probe does not detect water
- Low flow detected
 - Countdown timer reaches zero before the flow rate meets or exceeds the flow threshold
- Aux-In
 - Auxiliary-Input dry contact has been opened
 - Dry contact will need to be closed prior to resetting fault

Any of the conditions above will cause the respective system's red light to illuminate. The dashboard and SiteView will also reflect a fault for the affected pump.

Section 6: System Specifications

Refer to Figure 6-1 for a panel layout diagram showing dimensions and wiring access points.

Mechanical

Main enclosure: NEMA 4X (IP66) Enclosure material: Fiberglass reinforced plastic with Lexan window. External height: 18" (45.7 cm) External width: 16" (40.7 cm) External depth: 10" (25.4 cm) Weight: 15 to 45 lbs (6.8 to 20 kgs) (depending on installed options)

Power wiring access: Intrinsically safe wiring access (optional): Non-intrinsically safe wiring access: Bottom of enclosure. Left side of enclosure. Bottom of enclosure.

Electrical

AC Power: 115VAC 50/60Hz 230VAC 1Φ, 3Φ, 460VAC DC Power: 24VDC DC Pump Power: Auxiliary Output Form C:

Voltage Range of 22 – 50VDC Voltage Range of 350 – 400VDC 10A (600VAC max) resistive load

Site Requirements

Door clearance for full 180° door opening: Enclosure footprint for wall mounting:	20" (50.7cm) wide x 30" (76.2 cm) in front of and to left of enclosure 18.94" (48.11 cm) wide x 14" (35.56 cm) high
Modem:	Requires cellular service
Wi-Fi:	802.11b/g/n Wi-Fi 4

Figure 6-1

Section 7: System Schematics

See drawing package included with each system. For copies contact Geotech and reference the order number labeled on the inside of your control panel.

Section 8: Parts and Accessories

ENCLOSURE

Description	Part #
LATCH,LOCKABLE,GECM,	16110046
HOLE PLUG,LOCKING,1-3/32"ID,	19053084
LATCH,CATCH,GLS FIBER,	10565

CONDUIT

CONN,HUB,3/4"CONDUIT,AL,	PPP019022
NIPPLE,AL,.75X3",	PPM031023
CONDUIT, FITTING 3/4" STRAIGHT, LIQUID TIGHT	10514
SEAL,CONDUIT,.75"HUB,Y TYPE, KILLARK	00170

DEAD FRONT

HOA SWITCH,	16110042
LIGHT, INDICATING, YELLOW, 12VDC, 22MM	16091395
LIGHT, INDICATING, GREEN, 12VDC, 22MM	16091351
LIGHT,INDICATING,RED,12VDC, 22MM	16091350
INDICATOR LIGHT, YELLOW, GECM,	16110043
INDICATOR LIGHT, RED, GECM,	16110088
INDICATOR LIGHT, GREEN, GECM,	16110112
KNOB,1/4-20,GRIP KNURLED,GECM,	16110038
LATCH,KEEPER,GLASS FIBER,	10564
PLUG, SNAP IN, BLACK, 7/8", FOR PANELS	19053425

POWER GRID

FUSE HOLDER, COVER FOR SVE, FGF2, TRANSFORMER	16090188
FUSE HOLDER ASSEMBLY,	2010029
FUSE,1A,250V,SLO-BLO,	PPE011026
FUSE,.5A,250V,SLO-BLO,	PPE011016

MOTOR STARTER / VFD

MOTOR STARTER,12-16A,230V,3PH, 115V COIL	16110062
MOTOR STARTER,10-16A,115V,1PH, 115V COIL	16110048
VFD,1.5HP,110-115V,NEMA4, INV	11201378
VFD,3HP,200-240V,NEMA4X, INV	11201379
VFD,7.5HP,240V,3PH,24A, ODE-3-320240-3F4-B	16110294
VFD,15HP,480V,3PH,24A, ODE-3-340240-3F4B	16110295

ADDITIONAL PARTS

Description	Part #
ASSY,WINCH,HEAVY DUTY,110FT 2500LB MAX	2030001
PROBE,SM.DIA.,DENS,100',2005	56120009
PROBE,SM.DIA.,DENS,25',2005	56120010
PROBE,SM.DIA.,DENS,50',2005	56120013
JUNCTION BOX, SIGNAL	2390065
JUNCTION BOX, XP	2390066
MANUAL,GECM,WTDP	16110239

ACCESSORIES

Description	Part #
SWITCH, ELCTROMECHANICAL, EMERGENCY STOP, NO/NC	19600042
METER, HOUR, 115V, 50/60, GECM	16110045
RELAY,12VDC,30A,DPDT,	12050521
RELAY, 110V, DPDT, 10AMP	PPE014090
RELAY, 230V, DPDT, 10AMP	PPE014091

*GECM base unit does not include motor starters. Motor starters and power supply relays must be specified per system.

Appendix A: Glossary

Dry Contact

An electrical switch that is isolated from any source of electrical energy. In the diagram below, the dry contacts are acted upon by a relay coil that is isolated from the switch.

Form C Contacts

A set of electrical contacts that has both Normally Open and Normally Closed poles as shown in the diagram below. See definitions of Normally Open and Normally Closed also included in this Glossary.

Figure 2-1

IP 66

Enclosure intended for outdoor use primarily to provide a degree of protection against windblown dust and rain, splashing water, and hose-directed water; undamaged by the formation of ice on the enclosure. The International Electrotechnical Commission (IEC) equivalent to a rating of NEMA 4.

Latching

A fault that, once engaged, requires a manual reset to clear. An alarm is non-latching and will clear automatically when the condition that caused the alarm either spontaneously corrects itself or is corrected by operator intervention.

PLC

A computer that is capable of executing programmed instructions for input and output operations.

NEC

The NEC (National Electrical Code) is a collection of electrical safety standards compiled by the National Fire Protection Association.

NEMA 4

Enclosure intended for outdoor use primarily to provide a degree of protection against windblown dust and rain, splashing water, and hose-directed water; undamaged by the formation of ice on the enclosure. (See IP 66).

Normally Closed

A Switch that is closed when not acted upon. See Figure 3-1 for an example of a Normally Closed switch that is held open by a magnet embedded in a probe float. When the magnet is moved, the switch closes.

Normally Open

A switch that is open when not acted upon.

Appendix B – Submersible Water Pumps

Refer to the installation and operation manuals included with your pump and motor. The following pages will include cable and motor specifications as well as start box schematics.

Mot Rati	tor ing						AWG C	opper	Wire S	Size				
Volts	HP	14	12	10	8	6	4	3	2	1	0	00	000	0000
115	⅓	130	210	340	540	840	1300	1610	1960	2390	2910	3540	4210	5060
	1/2	100	160	250	390	620	960	1190	1460	1780	2160	2630	3140	3770
230	⅓	550	880	1390	2190	3400	5250	6520	7960	9690	11770			
	1/2	400	650	1020	1610	2510	3880	4810	5880	7170	8720			
	3⁄4	300	480	760	1200	1870	2890	3580	4370	5330	6470	7870		
	1	250	400	630	990	1540	2380	2960	3610	4410	5360	6520		
	1½	190	310	480	770	1200	1870	2320	2850	3500	4280	5240		
	2	150	250	390	620	970	1530	1910	2360	2930	3620	4480		
	3	120*	190	300	470	750	1190	1490	1850	2320	2890	3610		
	5	0	0	180*	280	450	710	890	1110	1390	1740	2170	2680	
	7½	0	0	0	200*	310	490	610	750	930	1140	1410	1720	
	10	0	0	0	0	250*	390	490	600	750	930	1160	1430	1760
	15	0	0	0	0	170*	270*	340	430	530	660	820	1020	1260

 Table C-1: Two or Three Wire Cable, 60 Hz (Service Entrance to Motor – Maximum Length in Feet)

Lengths without the asterisk (*) meet the U.S. National Electrical Code ampacity for either individual conductors or jacketed 60°C cable. Lengths marked * meet the NEC ampacity only for individual conductor 60°C cable in free air or water, not in conduit. If cable rated other than 60°C is used lengths remain unchanged, but the minimum size acceptable for each rating must be based on the NEC Table column for that temperature cable.

Flat molded cable is considered to be jacketed cable.

Maximum lengths shown maintain motor voltage at 95% of service entrance voltage, running at maximum nameplate amperes. If service entrance voltage will be at least motor nameplate voltage under normal load conditions, 50% additional length is permissible for all sizes. This table is based on copper wire. If aluminum wire is to be used, it must be two sizes larger.

Example: If the table calls for 12AWG copper wire, 10AWG aluminum wire would be required.

The portion of the total cable length which is between the supply and single-phase control box with line contactor should not exceed 25% of the total maximum allowable, to ensure reliable contactor operation. Single-phase control boxes without line contactors may be connected at any point in the total cable length.

Lengths represent a 5% voltage drop. If 3% is required, multiply by .6 for maximum feet. Contact manufacturer for 75°C or 90°C cable lengths.

	<u> </u>

The portion of the total cable between the service entrance and a $3\emptyset$ motor starter should not exceed 25% of the total maximum length to assure reliable started **operation**.

Use of smaller than recommended cable voids warranty, can cause failure of the motor to start and operate properly, and may cause cable overheating.

Motor Ra	ting						AWG C	opper V	Vire Siz	e					. I	MCM Co	pper W	lire Siz	e
Volts	HP	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
200V						r													
60 Hz																			
Three Phase																			
Three Wire																			
	1/2	710	1140	1800	2840	4420													
	3/4	510	810	1280	2030	3160													
	1	430	690	1080	1710	2670	4140	5140											
	1 1/2	310	500	790	1260	1960	3050	3780											
	2	240	390	610	970	1520	2360	2940	3610	4430	5420								
	3	180	290	270	740	1160	1810	2250	2760	3390	4130								
	5	110*	170	280	440	690	1080	1350	1660	2040	2490	3050	3670	4440	5030				
	7 1/2	0	0	200	310	490	770	960	1180	1450	1770	2170	2600	3150	3560				
	10	0	0	0	230*	370	570	720	880	1090	1330	1640	1970	2390	2720	3100	3480	3800	4420
	15	0	0	0	160*	250*	390	490	600	740	910	1110	1340	1630	1850	2100	2350	2570	2980
	20	0	0	0	0	190*	300*	380	460	570	700	860	1050	1270	1440	1650	1850	2020	2360
	25	0	0	0	0	0	240*	300*	370*	460	570	700	840	1030	1170	1330	1500	1640	1900
	30	0	0	0	0	0	0	250*	310*	380*	470	580	700	850	970	1110	1250	1360	1590
230V	1/2	930	1490	2350	3700	5760	8910												
60 Hz	3/4	670	1080	1700	2580	4190	6490	8060	9860										
Three Phase	1	560	910	1430	2260	3520	5460	9780	8290										
Three Wire	1 1/2	420	670	1060	1670	2610	4050	5030	6160	7530	9170								
	2	320	510	810	1280	2010	3130	3890	4770	5860	7170	8780							
	3	240	390	620	990	1540	2400	2980	3660	4480	5470	6690	8020	9680					
	5	140*	230	370	590	920	1430	1790	2190	2690	3290	4030	4850	5870	6650	7560	8460	9220	
	7 1/2	0	160*	260	420	650	1020	1270	1560	1920	2340	2870	3440	4160	4710	5340	5970	6500	7510
	10	ů.	0	190*	310	490	760	950	1170	1440	1760	2160	2610	3160	3590	4100	4600	5020	5840
	15	ů.	ů.	0	210*	330	520	650	800	980	1200	1470	1780	2150	2440	2780	3110	3400	3640
	20	0	0	ő	0	250*	400	500	610	760	930	1140	1380	1680	1910	2180	2450	2680	3120
	25	0	0	ő	ő	0	320*	400	600	610	750	920	1120	1360	1540	1760	1980	2160	2520
	30	0	0	6	0	0	260*	330*	410*	510	620	760	930	1130	1280	1470	1650	1800	2110
4601/	1/2	3770	6020	9460	•	v	200	550	410	510	020	100	550	1130	1200	147.0	1050	1000	2110
60 Hz	3/4	2730	4350	6860								-							
Three Dhase	4	2200	2670	6770	0070														
Three Mire	1 1/2	1700	2710	4240	6720							<u> </u>							
Thee whe	5	1200	2070	4240	6150	0050													
	6	1000	1600	3240	2070	6200													
	5	600	1000	1500	3370	2700	6760				<u> </u>	<u> </u>	-						
	7 4/2	420	690	1070	1600	2640	4100	6100	6260	7690									
	10	210	600	700	1250	1000	2050	2000	4690	6760	7050								
	46	0	240*	640	050	1240	20000	2000	2000	2020	4010	6000	7110						
	10	0	540	440*	650	1020	2090	2000	3200	3930	4010	4690	6620						
	20	0	0	410	000	1030	1010	2000	2470	3040	2040	4500	5530	6400					
	20	0	0	0	530"	000	1070	1020	1990	2450	3010	3700	4470	5430	6420	6000			
	30	0	0	0	430	000	1070	1330	1040	2030	2490	0000	3700	4500	2720	1000			
	40	0	0	0	0	500	490	300	1210	1490	1030	1010	2100	3290	3730	4200	2020	4490	4950
1	50	0	0	0	0	0	640*	670*	900	1210	1480	1010	1950	2000	3010	3420	3030	4160	4000
	76	U	0	0	0	U	540"	0/0"	030"	1020	1250	1540	1050	2240	2540	2890	3240	3540	4100
	()	U	V	V	V	U	U	U	0801	0401	1030	1260	1520	1850	2100	2400	2700	2950	3440
1	100	0	0	U	0	U	U	0	0	620*	160*	940*	1130	1380	1560	1790	2010	2190	2550
	125	U	U	U	U	U	U	U	U	U	U	/40*	890*	1000*	1220	1390	1560	1/00	1960
1	150	0	0	0	0	U	U	0	U	0	U	U	/60*	920*	1050*	1190*	1340	1460	1690
	175	U	U	U	U	U	U	U	U	U	U	U	U	810*	930*	1060*	1190*	1300	1510
	200	0	0	0	0	0	0	0	0	0	0	0	0	0	810*	920*	1030*	1130*	1310

 Table C-2a: 3-Phase Cable, 60 Hz (Service Entrance to Motor – Maximum Length in Feet)

Motor Ra	ting						AWG C	opper \	Vire Si:	ze						MCM Co	opper W	ire Siz	e
Volts	HP	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500
460V	1/2	3770	6020	9460															
60 Hz	3/4	2730	4350	6850															
Three Phase	1	2300	3670	5770	9070														
Three Wire	1 1/2	1700	2710	4240	6730														
	2	1300	2070	3240	5150	8050													
	3	1000	1600	2520	3970	6200													
	5	590	950	1500	2360	3700	5750												
	7 1/2	420	680	1070	1690	2640	4100	5100	6260	7680									
	10	310	500	790	1250	1960	3050	3800	4680	5750	7050								
	15	0	340*	540	850	1340	2090	2600	3200	3930	4810	5900	7110						
	20	0	0	410*	650	1030	1610	2000	2470	3040	3730	4580	5530						
	25	0	0	0	530*	830	1300	1620	1990	2450	3010	3700	4470	5430					
	30	0	0	0	430*	680	1070	1330	1640	2030	2490	3060	3700	4500	5130	5860			
	40	0	0	0	0	500*	490	980	1210	1490	1830	2250	2710	3290	3730	4250			
	50	0	0	0	0	0	640*	800	980	1210	1480	1810	2190	2650	3010	3420	3830	4180	4850
	60	0	0	0	0	0	540*	670*	830*	1020	1250	1540	1850	2240	2540	2890	3240	3540	4100
	75	0	0	0	0	0	0	0	680*	840*	1030	1260	1520	1850	2100	2400	2700	2950	3440
	100	0	0	0	0	0	0	0	0	620*	760*	940*	1130	1380	1560	1790	2010	2190	2550
	125	0	0	0	0	0	0	0	0	0	0	740*	890*	1000*	1220	1390	1560	1700	1960
	150	0	0	0	0	0	0	0	0	0	0	0	760*	920*	1050*	1190*	1340	1460	1690
	175	0	0	0	0	0	0	0	0	0	0	0	0	810*	930*	1060*	1190*	1300	1510
	200	0	0	0	0	0	0	0	0	0	0	0	0	0	810*	920*	1030*	1130*	1310
575V	1/2	5900	9410																
60 Hz	3/4	4270	6810																
Three Phase	1	3630	5800	9120															
Three Wire	1 1/2	2620	44180	6580															
	2	2030	3250	5110	8060														
	3	1580	2530	3980	6270														
	5	920	1480	2330	3680	5750													
	7 1/2	660	1060	1680	2650	4150													
	[10	490	750	1240	1950	3060	4770	5940											
	15	330*	530	850	1340	2090	3260	4060											
	20	0	410*	650	1030	1610	2520	3140	3860	4760	5830								
	25	0	0	520*	830	1300	2030	2530	3110	3840	4710			_					
	30	0	0	430*	680	1070	1670	2080	2560	3160	3880	4770	5780	7030	8000				
	40	0	0	0	500*	790	1240	1540	1900	2330	2860	3510	4230	5140	5830				
	50	0	0	0	0	640*	1000	1250	1540	1890	2310	2840	3420	4140	4700	5340	5990	6530	7580
	60	0	0	0	0	0	850*	1060	1300	1600	1960	2400	2890	3500	3970	4520	5070	5530	6410
	/5	0	0	0	0	0	690*	860*	1060*	1310	1600	1970	2380	2890	3290	3750	4220	4610	5370
	100	0	0	0	0	0	0	0	790*	970*	1190*	1460	1//0	2150	2440	2790	3140	3430	3990
	125	0	0	0	0	0	0	0	0	110*	950*	1160*	1400	1690	1920	2180	2440	2650	3070
	150	U	0	0	U	U	U	U	0	U	800-	1990*	1190*	1440	1630	1860	2080	2270	2640
	1/5	0	0	10	0	U	V	0	0	U	U U	8701	1050*	1270*	1450*	1650	1860	2030	2360
40004 00 11	200	U	0	0	0	0	U	0	0	0	0	0	920*	1110*	1260*	1440*	1620	1760	2050
460V-60 Hz	150	U	0	U	U	U	U	U	510*	630*	1/10*	1920	1140	1380	1570	1/90	2000	2180	2530
Inree Phase	1/5	0	0	0	0	0	U	0	0	550*	680*	830*	1000	1220	1390	1580	1/80	1950	2270
Six Wire	200	0	0	0	U	V	U	U	0	U	5901	130	880^	1070	1210	1380	1550	1690	1970
5/5V-60 Hz	150	U	0	10	U	U	U	650*	800*	1990~	1210	1480	1/80	2160	2450	2/90	3120	3410	3950
Inree Phase	1/5	U	0	U	0	U	U	U	/00*	860*	1060	1300	1570	1910	21/0	2480	2780	3040	3540
Six Wire	200	0	0	0	0	0	U	U	U	/60*	1930*	1140	1370	1670	1890	2160	2420	2640	3070

 Table C-2b:
 Three Phase Cable, 60 Hz (Service Entrance to Motor – Maximum Length in Feet) (continued)

Decontamination Procedures

Some common decontamination solutions are listed below along with the contaminants they are effective against:

Solution Effective Against

Water Short-chain hydrocarbons, inorganic compounds, salts, some organic acids, other polar compounds.

Dilute AcidsBasic (caustic or alkaline) compounds, amines, hydrazines.Dilute BasesAcidic compounds, phenols thiols, some nitro- and sulfonic compounds.Organic solventsNon-polar compounds (such as some organic compounds)

The use of organic solvents is not recommended because:

- 1) Organic solvents can permeate and/or degrade the protective clothing and
- 2) they are generally toxic and may result in unnecessary employee exposure to hazardous chemicals.

When in doubt, use a dish washing liquid detergent. As a decontamination solution, it is readily available, is the safest of all the above, and is usually strong enough if used generously.

The use of steam can also be effective for decontamination. A water-lazer (pressurized water) is exceptionally valuable.

The following substances are noted for their particular efficiency in removing certain contaminants or for decontaminating certain types of equipment.

<u>Solution</u>	Effective Against
Penetone	PCB Contamination (since penetone may also remove paint, it is a good idea to spot-test before use)
Liquinox	Contaminated pumps
lvory liquid	Oils
Diluted HTH	Cyanides
Radiac	Low level radioactivity
Isopropanol	Biological agents (should not be used on rubber products since it will break down rubber)
Hexane	Certain types of lab or sampling equipment (use of hexane is discouraged due to its flammability and toxicity)
Zep	General purpose cleaning
Alconox	General purpose cleaning

Decontamination Solutions to Avoid

Some decontamination solutions should be avoided because of their toxicity, flammability, or harmful effects to the environment.

Halogenated hydrocarbons, such as carbon tetrachloride, should not be used because of their toxicity, possible incompatibility, and some because of their flammability.

Organic decontamination solutions should not be used on personal protective equipment (PPE) because they may degrade the rubber or other materials comprising the PPE.

Mercurials are sometimes used for sterilization. They should be avoided because of their toxicity.

Chemical leaching, polymerization, and halogen stripping should all be avoided because of possible complications during decontamination.

Sand-blasting, a method of physical removal, should be avoided because the sand used on the contaminated object usually needs to be disposed of as hazardous waste, a very costly proposition. Also, sand-blasting exposes personnel to silica, a carcinogen.

Freon is known to be particularly effective for the cleansing of PCB's but its effect on the ozone layer is extremely harmful. Its use is discouraged.

Strong acids or bases should not be used when cleaning metals and gaskets or tools or other equipment because of the possibility of corrosion.

Disposal of Decontamination Solutions and Wastewater

All solutions and water used for decontamination must be collected. If lab analysis indicates that the water and/or solutions exceed allowable contamination levels, they must be treated as hazardous waste. Alternatively, the solutions and water may be treated onsite to lower the contamination levels and render them non-hazardous.

Containers such as 55-gallon drums should be available for storage of wastes.

Spent decontamination solutions can be collected by using heavy-duty plastic sheets, visqueen sheets, kiddie pools, or if needed, a larger containment basin. The decontamination of equipment must be performed on the sheets or in the basins. They could be placed on a slight angle so that the spent decontamination solutions drain into a collection basin or drum.

Recommended Supplies for Decontamination of Personnel, Clothing and Equipment

The list below contains recommendations for supplies which would be on hand for the decontamination of personnel, clothing, and equipment. Depending on the site activities, not all these items may be needed. Alternatively, some additional items not listed here may be required.

- Drop cloths of plastic or other suitable material, such as visqueen, for heavily contaminated equipment.
- Disposal collection containers, such as drums or suitably lined trash cans for disposable clothing and heavily contaminated personal protective clothing or equipment to be discarded.
- Lined box with adsorbent for wiping or rinsing off gross contaminants and liquid contaminants.

- Wash tubs of sufficient size to enable workers to place booted foot in and wash
 off contaminants (without a drain or with a drain connected to a collection tank or
 appropriate treatment system).
- Rinse tubs of sufficient size to enable workers to place booted foot in and wash
 off contaminants (without a drain or with a drain connected to a collection tank or
 appropriate treatment system
- Wash solutions selected to wash off and reduce the hazards associated with the contaminated wash and rinse solutions.
- Rinse solution (usually water) to remove contaminants and contaminated wash solutions.
- Long-handled, soft-bristled brushes to help wash and rinse off contaminants.
- Lockers and cabinets for storage of decontaminated clothing and equipment.
- Storage containers for contaminated wash and rinse solutions.
- Plastic sheeting, sealed pads with drains, or other appropriate methods for containing and collecting contaminated wash and rinse water spilled during decontamination.
- Shower facilities for full body wash or at a minimum, personal wash sinks (with drains connected to a collection tank or appropriate treatment system).
- Soap or wash solution, wash cloths and towels.
- Clean clothing and personal item storage lockers and/or closets.

	Revision History	
Project #	Description	Date
1795	Release, StellaR	12/16/2019
M2251	Rolled back to previous version on manual PN: 10260. Updated to include SiteView, and other changes focused on the GECM. – JL & GR	7/21/2023
M2251	Added Part Number Configurator to Parts and Accessories Section. Added Part Number Configurator and updated part numbers in table. –ZM	9/14/2023
M2251	Cleaned up manual to fix incorrect statements and more accurately describe system. – GR & ZM	11/28/2023
M2363	Added WTDP Extended High to Low Probes – GR	12/15/2023
M2381	Added Solar Powered GECM, conductivity probe, flow monitor, and more instructions tailored toward transducer options. Provided more operation information on VFDs, motor starters, and float level probes. Updated Fig1-2. Removed configurator and old information about multi-panel networks – GR & ZM	6/18/2024

The Warranty

For a period of one (1) year from date of first sale, product is warranted to be free from defects in materials and workmanship. Geotech agrees to repair or replace, at Geotech's option, the portion proving defective, or at our option to refund the purchase price thereof. Geotech will have no warranty obligation if the product is subjected to abnormal operating conditions, accident, abuse, misuse, unauthorized modification, alteration, repair, or replacement of wear parts. User assumes all other risk, if any, including the risk of injury, loss, or damage, direct or consequential, arising out of the use, misuse, or inability to use this product. User agrees to use, maintain and install product in accordance with recommendations and instructions. User is responsible for transportation charges connected to the repair or replacement of product under this warranty.

Equipment Return Policy

A Return Material Authorization number (RMA #) is required prior to return of any equipment to our facilities, please call our 800 number for appropriate location. An RMA # will be issued upon receipt of your request to return equipment, which should include reasons for the return. Your return shipment to us must have this RMA # clearly marked on the outside of the package. Proof of date of purchase is required for processing of all warranty requests.

This policy applies to both equipment sales and repair orders.

FOR A RETURN MATERIAL AUTHORIZATION, PLEASE CALL OUR SERVICE DEPARTMENT AT 1-800-833-7958.

	Model Number:

Date of Purchase:

Equipment Decontamination

Prior to return, all equipment must be thoroughly cleaned and decontaminated. Please make note on RMA form, the use of equipment, contaminants equipment was exposed to, and decontamination solutions/methods used. Geotech reserves the right to refuse any equipment not properly decontaminated. Geotech may also choose to decontaminate the equipment for a fee, which will be applied to the repair order invoice.

Geotech Environmental Equipment, Inc. 2650 East 40th Avenue Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com